IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v112y2018icp44-51.html
   My bibliography  Save this article

A new chaotic model for glucose-insulin regulatory system

Author

Listed:
  • Shabestari, Payam Sadeghi
  • Panahi, Shirin
  • Hatef, Boshra
  • Jafari, Sajad
  • Sprott, Julien C.

Abstract

For non-invasively investigating the interaction between insulin and glucose, mathematical modeling is very helpful. In this paper, we propose a new model for insulin-glucose regulatory system based on the well-known prey and predator models. The results of previous researches demonstrate that chaos is a common feature in complex biological systems. Our results are in accordance with previous studies and indicate that glucose-insulin regulatory system has various dynamics in different conditions. One interesting feature of this new model is having hidden attractor for some set of parameters. The result of this paper might be helpful for better understanding of regulatory system that contains glucose, insulin, and diseases such as diabetes, hypoglycemia, and hyperinsulinemia.

Suggested Citation

  • Shabestari, Payam Sadeghi & Panahi, Shirin & Hatef, Boshra & Jafari, Sajad & Sprott, Julien C., 2018. "A new chaotic model for glucose-insulin regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 44-51.
  • Handle: RePEc:eee:chsofr:v:112:y:2018:i:c:p:44-51
    DOI: 10.1016/j.chaos.2018.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918302236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erkaymaz, Okan & Ozer, Mahmut & Perc, Matjaž, 2017. "Performance of small-world feedforward neural networks for the diagnosis of diabetes," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 22-28.
    2. Panahi, Shirin & Aram, Zainab & Jafari, Sajad & Ma, Jun & Sprott, J.C., 2017. "Modeling of epilepsy based on chaotic artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 150-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debbouche, Nadjette & Almatroud, A. Othman & Ouannas, Adel & Batiha, Iqbal M., 2021. "Chaos and coexisting attractors in glucose-insulin regulatory system with incommensurate fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Borah, Manashita & Das, Debanita & Gayan, Antara & Fenton, Flavio & Cherry, Elizabeth, 2021. "Control and anticontrol of chaos in fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola virus diseases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Gritli, Hassène, 2019. "Poincaré maps design for the stabilization of limit cycles in non-autonomous nonlinear systems via time-piecewise-constant feedback controllers with application to the chaotic Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 127-145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Kaya, Ceren & Erkaymaz, Okan & Ayar, Orhan & Özer, Mahmut, 2018. "Impact of hybrid neural network on the early diagnosis of diabetic retinopathy disease from video-oculography signals," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 164-174.
    4. Wan, Qiuzhen & Li, Fei & Chen, Simiao & Yang, Qiao, 2023. "Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Panahi, Shirin & Aram, Zainab & Jafari, Sajad & Ma, Jun & Sprott, J.C., 2017. "Modeling of epilepsy based on chaotic artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 150-156.
    6. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    8. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    9. Biamou, Arsene Loic Mbanda & Tamba, Victor Kamdoum & Tagne, François Kapche & Takougang, Armand Cyrille Nzeukou, 2024. "Fractional-order-induced symmetric multi-scroll chaotic attractors and double bubble bifurcations in a memristive coupled Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Wang, Zhizhi & Hu, Bing & Zhou, Weiting & Xu, Minbo & Wang, Dingjiang, 2023. "Hopf bifurcation mechanism analysis in an improved cortex-basal ganglia network with distributed delays: An application to Parkinson’s disease," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    11. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Toraman, Suat & Alakus, Talha Burak & Turkoglu, Ibrahim, 2020. "Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Sabouri, Amir & Ghasemi, Mahdieh & Mehrabbeik, Mahtab, 2023. "The dynamical analysis of non-uniform neocortical network model in up-down state oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Zhang, Ge & Wang, Chunni & Alzahrani, Faris & Wu, Fuqiang & An, Xinlei, 2018. "Investigation of dynamical behaviors of neurons driven by memristive synapse," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 15-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:112:y:2018:i:c:p:44-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.