IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v134y2020ics0960077920301077.html
   My bibliography  Save this article

A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative

Author

Listed:
  • Baleanu, Dumitru
  • Jajarmi, Amin
  • Mohammadi, Hakimeh
  • Rezapour, Shahram

Abstract

In this research, we aim to propose a new fractional model for human liver involving Caputo–Fabrizio derivative with the exponential kernel. Concerning the new model, the existence of a unique solution is explored by using the Picard–Lindelöf approach and the fixed-point theory. In addition, the mathematical model is implemented by the homotopy analysis transform method whose convergence is also investigated. Eventually, numerical experiments are carried out to better illustrate the results. Comparative results with the real clinical data indicate the superiority of the new fractional model over the pre-existent integer-order model with ordinary time-derivatives.

Suggested Citation

  • Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301077
    DOI: 10.1016/j.chaos.2020.109705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920301077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahviranloo, Tofigh & Ghanbari, Behzad, 2020. "On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Ghalib, M. Mansha & Zafar, Azhar A. & Riaz, M. Bilal & Hammouch, Z. & Shabbir, Khurram, 2020. "Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Suheil A. Khuri, 2001. "A Laplace decomposition algorithm applied to a class of nonlinear differential equations," Journal of Applied Mathematics, Hindawi, vol. 1, pages 1-15, January.
    4. Jajarmi, Amin & Arshad, Sadia & Baleanu, Dumitru, 2019. "A new fractional modelling and control strategy for the outbreak of dengue fever," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Hajipour, Mojtaba & Jajarmi, Amin & Malek, Alaeddin & Baleanu, Dumitru, 2018. "Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 146-158.
    6. Ghanbari, Behzad & Kumar, Sunil & Kumar, Ranbir, 2020. "A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.
    8. Salari, Amjad & Ghanbari, Behzad, 2019. "Existence and multiplicity for some boundary value problems involving Caputo and Atangana–Baleanu fractional derivatives: A variational approach," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 312-317.
    9. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    10. Gao, Wei & Ghanbari, Behzad & Baskonus, Haci Mehmet, 2019. "New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zafar, Zain Ul Abadin & Zaib, Sumera & Hussain, Muhammad Tanveer & Tunç, Cemil & Javeed, Shumaila, 2022. "Analysis and numerical simulation of tuberculosis model using different fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Zafar, Zain Ul Abadin & Ali, Nigar & Baleanu, Dumitru, 2021. "Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Zafar, Zain Ul Abadin & Younas, Samina & Hussain, Muhammad Tanveer & Tunç, Cemil, 2021. "Fractional aspects of coupled mass-spring system," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Ghanbari, Behzad & Cattani, Carlo, 2020. "On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Oxygen-plankton model under the effect of global warming with nonsingular fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    10. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    12. Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    13. Khan, Aziz & Abdeljawad, Thabet & Gómez-Aguilar, J.F. & Khan, Hasib, 2020. "Dynamical study of fractional order mutualism parasitism food web module," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    14. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    16. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    17. Ahmed, Nauman & Rafiq, Muhammad & Adel, Waleed & Rezazadeh, Hadi & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2020. "Structure Preserving Numerical Analysis of HIV and CD4+T-Cells Reaction Diffusion Model in Two Space Dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Khater, Mostafa M.A. & Attia, Raghda A.M. & Abdel-Aty, Abdel-Haleem & Alharbi, W. & Lu, Dianchen, 2020. "Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. Sweilam, N.H. & AL-Mekhlafi, S.M. & Alshomrani, A.S. & Baleanu, D., 2020. "Comparative study for optimal control nonlinear variable-order fractional tumor model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    20. Kumar, Sunil & Kumar, Ajay & Samet, Bessem & Gómez-Aguilar, J.F. & Osman, M.S., 2020. "A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.