IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v113y2018icp275-293.html
   My bibliography  Save this article

A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors

Author

Listed:
  • Leutcho, Gervais Dolvis
  • Kengne, Jacques

Abstract

This work proposes and systematically investigates the dynamics of a novel snap system with a single parameterized nonlinearity in the form φk(z)=0.5(exp(kz)−exp(−z)). The form of nonlinearity is physically interesting in the sense that the corresponding circuit realization involves only off-the shelf electronic components such as resistors, semiconductor diodes and operational amplifiers. Parameter k (i.e. a control resistor) serves to smoothly adjust the nonlinearity, and hence the symmetry of the system. In particular, for k=1, the nonlinearity is a hyperbolic sine, and thus the system is point symmetry about the origin. For k ≠ 1, the system is non-symmetric. The fundamental dynamics of the system are investigated in terms of equilibria and stability, phase space trajectory plots, bifurcations diagrams, and graphs of Lyapunov exponents. When monitoring the system parameters, some striking phenomena are found including period doubling bifurcation, reverse bifurcations, merging crises, coexisting bifurcations, hysteresis and offset boosting. Several windows in the parameters space are depicted in which the novel snap system displays a plethora of coexisting attractors (i.e. two, three, four, five or six different attractors) depending solely on the choice of the initial conditions. The magnetization of the state space due to the presence of multiple competing solutions is illustrated by means of basins of attraction. Laboratory experimental results confirm the theoretical predictions.

Suggested Citation

  • Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
  • Handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:275-293
    DOI: 10.1016/j.chaos.2018.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918302728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunbiao & Sprott, Julien Clinton & Kapitaniak, Tomasz & Lu, Tianai, 2018. "Infinite lattice of hyperchaotic strange attractors," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 76-82.
    2. Linz, Stefan J., 2008. "On hyperjerky systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 741-747.
    3. Fotsin, H.B. & Woafo, P., 2005. "Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1363-1371.
    4. Jafari, Sajad & Sprott, J.C., 2013. "Simple chaotic flows with a line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 79-84.
    5. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    6. Lai, Qiang & Nestor, Tsafack & Kengne, Jacques & Zhao, Xiao-Wen, 2018. "Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 92-102.
    7. Njitacke, Z.T. & kengne, J. & Fotsin, H.B. & Negou, A. Nguomkam & Tchiotsop, D., 2016. "Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 180-197.
    8. Hanias, M.P. & Giannaris, G. & Spyridakis, A. & Rigas, A., 2006. "Time series analysis in chaotic diode resonator circuit," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 569-573.
    9. Caraiani, Petre, 2013. "Testing for nonlinearity and chaos in economic time series with noise titration," Economics Letters, Elsevier, vol. 120(2), pages 192-194.
    10. Li, Guo Hui & Zhou, Shi Ping & Yang, Kui, 2007. "Controlling chaos in Colpitts oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 582-587.
    11. Jafari, Sajad & Ahmadi, Atefeh & Panahi, Shirin & Rajagopal, Karthikeyan, 2018. "Extreme multi-stability: When imperfection changes quality," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 182-186.
    12. Chlouverakis, Konstantinos E. & Sprott, J.C., 2006. "Chaotic hyperjerk systems," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 739-746.
    13. Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.
    14. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2011. "Elementary chaotic snap flows," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 995-1003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zefeng & Huang, Lilian & Liu, Jin & Guo, Qiang & Du, Xiuli, 2022. "A new method of constructing cyclic symmetric conservative chaotic systems and improved offset boosting control," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Leutcho, Gervais Dolvis & Jafari, Sajad & Hamarash, Ibrahim Ismael & Kengne, Jacques & Tabekoueng Njitacke, Zeric & Hussain, Iqtadar, 2020. "A new megastable nonlinear oscillator with infinite attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Njitacke, Zeric Tabekoueng & Doubla, Isaac Sami & Mabekou, Sandrine & Kengne, Jacques, 2020. "Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: Coexistence of patterns and its analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    4. Zuolei Wang & Lizhou Zhuang & Jianjiang Yu & Haibo Jiang & Wanjiang Xu & Xuerong Shi, 2023. "Hidden Dynamics of a New Jerk-like System with a Smooth Memristor and Applications in Image Encryption," Mathematics, MDPI, vol. 11(22), pages 1-18, November.
    5. Boui A Boya, Bertrand Frederick & Ramakrishnan, Balamurali & Effa, Joseph Yves & Kengne, Jacques & Rajagopal, Karthikeyan, 2022. "The effects of symmetry breaking on the dynamics of an inertial neural system with a non-monotonic activation function: Theoretical study, asymmetric multistability and experimental investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    6. Karawanich, Khunanon & Prommee, Pipat, 2022. "High-complex chaotic system based on new nonlinear function and OTA-based circuit realization," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    2. Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.
    3. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    5. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2018. "A hidden chaotic attractor in the classical Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 61-66.
    6. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    8. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    10. Ngamsa Tegnitsap, J.V. & Fotsin, H.B. & Megam Ngouonkadi, E.B., 2021. "Magnetic coupling based control of a chaotic circuit: Case of the van der Pol oscillator coupled to a linear circuit," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Njimah, Ouzerou Mouncherou & Ramadoss, Janarthanan & Telem, Adelaide Nicole Kengnou & Kengne, Jacques & Rajagopal, Karthikeyan, 2023. "Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: Theoretical analysis and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    14. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
    15. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Prasina Alexander & Selçuk Emiroğlu & Sathiyadevi Kanagaraj & Akif Akgul & Karthikeyan Rajagopal, 2023. "Infinite coexisting attractors in an autonomous hyperchaotic megastable oscillator and linear quadratic regulator-based control and synchronization," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(1), pages 1-13, January.
    18. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    19. Negou, A. Nguomkam & kengne, J. & Tchiotsop, D., 2018. "Periodicity, chaos and multiple coexisting attractors in a generalized Moore–Spiegel system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 275-289.
    20. Kengne, Jacques & Mogue, Ruth Line Tagne & Fozin, Theophile Fonzin & Telem, Adelaide Nicole Kengnou, 2019. "Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: Coexisting multiple attractors, period doubling reversals, crisis, and offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 63-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:275-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.