IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922007330.html
   My bibliography  Save this article

High-complex chaotic system based on new nonlinear function and OTA-based circuit realization

Author

Listed:
  • Karawanich, Khunanon
  • Prommee, Pipat

Abstract

This research proposes a chaotic system using a new modified rectangular nonlinear function based on the principle of the third-order jerk concept. The dynamic behaviors can be realized by manipulating only one parameter from periodic, non-periodic, single-scroll, and double-scroll attractors. The proposed chaotic system can achieve relatively high-complexity chaotic behavior, as evident in the comparatively high Kaplan-Yorke dimension (DKY = 2.43) with the existing jerk systems. The performances of the proposed chaotic system are also computed and simulated through the MATLAB numerical analysis, including scenarios of bifurcations branches, Lyapunov exponents, route to chaos, phase portraits, 0–1 test charts, and Poincaré map. The proposed system analyzes the coexistence of asymmetric or symmetric attractors confirmed with basins of attraction to highlight the presence of multiple attractors, which influence initial conditions. In addition, the system's offset boosting and amplitude control are included. Furthermore, a double-scroll attractor and a four-scroll attractor can also be achieved by placing nonlinear functions at different positions in the third-order system., The circuits of the proposed chaotic systems can be conveniently realized using commercially available operational transconductance amplifiers (OTAs) and capacitors. The performances of the circuit are also proven through the experimental results compared with the numerical results. The experimental results exhibit the ease of construction based on the new nonlinear function and are suitable for applying in the data encryptions.

Suggested Citation

  • Karawanich, Khunanon & Prommee, Pipat, 2022. "High-complex chaotic system based on new nonlinear function and OTA-based circuit realization," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922007330
    DOI: 10.1016/j.chaos.2022.112536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922007330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Gao, Tiegang & Gu, Qiaolun & Chen, Zengqiang, 2009. "Analysis of the hyper-chaos generated from Chen’s system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1849-1855.
    3. Wu, Yue & Zhou, Xiaobing & Chen, Jia & Hui, Bei, 2009. "Chaos synchronization of a new 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1812-1819.
    4. Tam, Lap Mou & Chen, Juhn Horng & Chen, Hsien Keng & Si Tou, Wai Meng, 2008. "Generation of hyperchaos from the Chen–Lee system via sinusoidal perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 826-839.
    5. Muhammad Marwan & Vagner Dos Santos & Muhammad Zainul Abidin & Anda Xiong, 2022. "Coexisting Attractor in a Gyrostat Chaotic System via Basin of Attraction and Synchronization of Two Nonidentical Mechanical Systems," Mathematics, MDPI, vol. 10(11), pages 1-15, June.
    6. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jie & Li, Chunbiao & Zhang, Qian & Zhang, Xin & Wu, Zhihao & Zhong, Haidong & Liu, Peiqiao & Liu, Zuohua & Tao, Changyuan & Huang, Keyu & Li, Jiaxing & Zheng, Guocan, 2024. "A memristive hyperchaotic oscillator with complete control and its application in the electrolysis of manganese," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    2. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Sadatieh, Shahriar & Dehghani, Maryam & Mohammadi, Mohsen & Boostani, Reza, 2021. "Extremum-seeking control of left ventricular assist device to maximize the cardiac output and prevent suction," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Abdullahi, Auwal, 2021. "Modelling of transmission and control of Lassa fever via Caputo fractional-order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    8. Ebrahem Hamouda & Clemente Cesarano & Sameh Askar & Ayman Elsharkawy, 2021. "Resolutions of the Jerk and Snap Vectors for a Quasi Curve in Euclidean 3-Space," Mathematics, MDPI, vol. 9(23), pages 1-16, December.
    9. Zuolei Wang & Lizhou Zhuang & Jianjiang Yu & Haibo Jiang & Wanjiang Xu & Xuerong Shi, 2023. "Hidden Dynamics of a New Jerk-like System with a Smooth Memristor and Applications in Image Encryption," Mathematics, MDPI, vol. 11(22), pages 1-18, November.
    10. Zhang, Mengjiao & Zang, Hongyan & Bai, Luyuan, 2022. "A new predefined-time sliding mode control scheme for synchronizing chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. García-Grimaldo, Claudio & Campos-Cantón, Eric, 2023. "Exploring a family of Bernoulli-like shift chaotic maps and its amplitude control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Awrejcewicz, Jan & Zafar, Azhar Ali & Kudra, Grzegorz & Riaz, Muhammad Bilal, 2020. "Theoretical study of the blood flow in arteries in the presence of magnetic particles and under periodic body acceleration," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Amouch, Mohamed & Karim, Noureddine, 2021. "Modeling the dynamic of COVID-19 with different types of transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Xuan, Liu & Ahmad, Shabir & Ullah, Aman & Saifullah, Sayed & Akgül, Ali & Qu, Haidong, 2022. "Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    16. Zhang, Zefeng & Huang, Lilian & Liu, Jin & Guo, Qiang & Du, Xiuli, 2022. "A new method of constructing cyclic symmetric conservative chaotic systems and improved offset boosting control," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Otunuga, Olusegun Michael, 2021. "Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    18. Abdullah, & Ahmad, Saeed & Owyed, Saud & Abdel-Aty, Abdel-Haleem & Mahmoud, Emad E. & Shah, Kamal & Alrabaiah, Hussam, 2021. "Mathematical analysis of COVID-19 via new mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    19. Yassine Bouteraa & Javad Mostafaee & Mourad Kchaou & Rabeh Abbassi & Houssem Jerbi & Saleh Mobayen, 2022. "A New Simple Chaotic System with One Nonlinear Term," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    20. Sheu, Long-Jye & Tam, Lap-Mou & Chen, Hsien-Keng & Lao, Seng-Kin, 2009. "Alternative implementation of the chaotic Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1923-1929.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922007330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.