IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v107y2018icp67-87.html
   My bibliography  Save this article

Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors

Author

Listed:
  • Leutcho, G.D.
  • Kengne, J.
  • Kengne, L. Kamdjeu

Abstract

In this paper, a novel fourth-order autonomous hyperjerk circuit is proposed and the corresponding dynamics is systematically analyzed. Two anti-parallel semiconductor diodes form the nonlinear component necessary for chaotic oscillations. The mathematical model of the novel circuit consists of a fourth-order (“elegant”) autonomous hyperjerk system with (a single) hyperbolic sine nonlinearity. The fundamental dynamic properties of the model are investigated including fixed points and stability, phase portraits, bifurcation diagrams, and Lyapunov exponent plots. Period-doubling bifurcation, periodic windows, coexisting bifurcations, symmetry recovering crises, and antimonotonicity (i.e. concurrent creation and annihilation of periodic orbit) are reported when monitoring the systems parameters. One of the main findings in this work is the presence of various windows in the parameter space in which the novel 4D-hyperjerk system develops the interesting property of multiple coexisting attractors (e.g. coexistence of two, three, four, five, six, seven height or nine disconnected periodic and chaotic attractors). To the best of the authors’ knowledge, this striking phenomenon is unique and has not yet been reported previously in a hyperjerk circuit, and thus represents a significant contribution to the understanding of the behavior of nonlinear dynamical systems in general. Laboratory experiments of the oscillator are carried out to verify the theoretical analysis.

Suggested Citation

  • Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.
  • Handle: RePEc:eee:chsofr:v:107:y:2018:i:c:p:67-87
    DOI: 10.1016/j.chaos.2017.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917305106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linz, Stefan J., 2008. "On hyperjerky systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 741-747.
    2. Chlouverakis, Konstantinos E. & Sprott, J.C., 2006. "Chaotic hyperjerk systems," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 739-746.
    3. Manimehan, I. & Philominathan, P., 2012. "Composite dynamical behaviors in a simple series–parallel LC circuit," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1501-1509.
    4. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2011. "Elementary chaotic snap flows," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 995-1003.
    5. Hanias, M.P. & Giannaris, G. & Spyridakis, A. & Rigas, A., 2006. "Time series analysis in chaotic diode resonator circuit," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 569-573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianyang Xie & Shiping Wen & Yuming Feng & Babatunde Oluwaseun Onasanya, 2022. "Three-Stage-Impulse Control of Memristor-Based Chen Hyper-Chaotic System," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    2. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    3. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
    5. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    7. Leutcho, Gervais Dolvis & Jafari, Sajad & Hamarash, Ibrahim Ismael & Kengne, Jacques & Tabekoueng Njitacke, Zeric & Hussain, Iqtadar, 2020. "A new megastable nonlinear oscillator with infinite attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Tametang Meli, Maxim Idriss & Yemélé, David & Leutcho, Gervais Dolvis, 2021. "Dynamical analysis of series hybrid electric vehicle powertrain with torsional vibration: Antimonotonicity and coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Zhang, Xu & Min, Fuhong & Dou, Yiping & Xu, Yeyin, 2023. "Bifurcation analysis of a modified FitzHugh-Nagumo neuron with electric field," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    2. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    3. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2018. "A hidden chaotic attractor in the classical Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 61-66.
    4. Kengne, Jacques & Mogue, Ruth Line Tagne & Fozin, Theophile Fonzin & Telem, Adelaide Nicole Kengnou, 2019. "Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: Coexisting multiple attractors, period doubling reversals, crisis, and offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 63-84.
    5. G. H. Kom & J. Kengne & J. R. Mboupda Pone & G. Kenne & A. B. Tiedeu, 2018. "Asymmetric Double Strange Attractors in a Simple Autonomous Jerk Circuit," Complexity, Hindawi, vol. 2018, pages 1-16, February.
    6. Ngamsa Tegnitsap, J.V. & Fotsin, H.B. & Megam Ngouonkadi, E.B., 2021. "Magnetic coupling based control of a chaotic circuit: Case of the van der Pol oscillator coupled to a linear circuit," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    8. Linz, Stefan J., 2008. "On hyperjerky systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 741-747.
    9. Njimah, Ouzerou Mouncherou & Ramadoss, Janarthanan & Telem, Adelaide Nicole Kengnou & Kengne, Jacques & Rajagopal, Karthikeyan, 2023. "Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: Theoretical analysis and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Amelia Carolina Sparavigna, 2015. "Jerk and Hyperjerk in a Rotating Frame of Reference," International Journal of Sciences, Office ijSciences, vol. 4(03), pages 29-33, March.
    11. Junhai Ma & Lijian Sun & Xueli Zhan, 2017. "Study on Triopoly Dynamic Game Model Based on Different Demand Forecast Methods in the Market," Complexity, Hindawi, vol. 2017, pages 1-12, July.
    12. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Lizama, Carlos & Murillo-Arcila, Marina, 2023. "On the existence of chaos for the fourth-order Moore–Gibson–Thompson equation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    14. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    15. Chu, Yan-Dong & Li, Xian-Feng & Zhang, Jian-Gang & Chang, Ying-Xiang, 2009. "Nonlinear dynamics analysis of a modified optically injected semiconductor lasers model," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 14-27.
    16. Ramadoss, Janarthanan & Kengne, Jacques & Kengnou Telem, Adélaïde Nicole & Rajagopal, Karthikeyan, 2022. "Broken symmetry and dynamics of a memristive diodes bridge-based Shinriki oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    17. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Prasina Alexander & Selçuk Emiroğlu & Sathiyadevi Kanagaraj & Akif Akgul & Karthikeyan Rajagopal, 2023. "Infinite coexisting attractors in an autonomous hyperchaotic megastable oscillator and linear quadratic regulator-based control and synchronization," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(1), pages 1-13, January.
    19. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Rech, Paulo C., 2022. "Self-excited and hidden attractors in a multistable jerk system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:107:y:2018:i:c:p:67-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.