IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v28y2006i3p739-746.html
   My bibliography  Save this article

Chaotic hyperjerk systems

Author

Listed:
  • Chlouverakis, Konstantinos E.
  • Sprott, J.C.

Abstract

A hyperjerk system is a dynamical system governed by an nth order ordinary differential equation with n>3 describing the time evolution of a single scalar variable. Such systems are surprisingly general and are prototypical examples of complex dynamical systems in a high-dimensional phase space. This paper describes a numerical study of a simple subclass of such systems and shows that they provide a means to extend the extensive study of chaotic systems with n=3. We present some simple chaotic hyperjerks of 4th and 5th order. Two cases are examined that are apparently the simplest possible chaotic flows for n=4, together with several hyperchaotic cases for n=4 and 5.

Suggested Citation

  • Chlouverakis, Konstantinos E. & Sprott, J.C., 2006. "Chaotic hyperjerk systems," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 739-746.
  • Handle: RePEc:eee:chsofr:v:28:y:2006:i:3:p:739-746
    DOI: 10.1016/j.chaos.2005.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905006776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linz, Stefan J., 2008. "On hyperjerky systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 741-747.
    2. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2011. "Elementary chaotic snap flows," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 995-1003.
    3. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    4. Chu, Yan-Dong & Li, Xian-Feng & Zhang, Jian-Gang & Chang, Ying-Xiang, 2009. "Nonlinear dynamics analysis of a modified optically injected semiconductor lasers model," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 14-27.
    5. Lizama, Carlos & Murillo-Arcila, Marina, 2023. "On the existence of chaos for the fourth-order Moore–Gibson–Thompson equation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Prasina Alexander & Selçuk Emiroğlu & Sathiyadevi Kanagaraj & Akif Akgul & Karthikeyan Rajagopal, 2023. "Infinite coexisting attractors in an autonomous hyperchaotic megastable oscillator and linear quadratic regulator-based control and synchronization," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(1), pages 1-13, January.
    7. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    8. Rech, Paulo C., 2022. "Self-excited and hidden attractors in a multistable jerk system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    11. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Amelia Carolina Sparavigna, 2015. "Jerk and Hyperjerk in a Rotating Frame of Reference," International Journal of Sciences, Office ijSciences, vol. 4(03), pages 29-33, March.
    13. Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.
    14. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2018. "A hidden chaotic attractor in the classical Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 61-66.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:28:y:2006:i:3:p:739-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.