IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v118y2019icp187-198.html
   My bibliography  Save this article

Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity

Author

Listed:
  • Signing, V.R. Folifack
  • Kengne, J.
  • Pone, J.R. Mboupda

Abstract

Recently, the study of systems with hidden attractors has become one of the most followed topics owing to their fundamental and technological importance. This contribution is focused on a new simple 4-D chaotic system (whose nonlinearity is a hyperbolic function) inspired by the quadratic system introduced by [Jay and Roy Nonlinear Dyn (2017) 89:1845–1862]. Basic properties of the new system are discussed and its complex behaviors are characterized using dynamic systems analysis tools. This system exhibits a rich repertoire of dynamic behaviors including chaos, chaos 2-torus, and quasi-periodic. Other interesting phenomena such as multistability, antimonotonicity, and torus-doubling bifurcations are also reported. Moreover, the hyperbolic cosine nonlinearity is easily implemented by using a pair of semiconductor diodes (no analog multiplier is involved). We confirm the feasibility of the proposed theoretical model using PSpice simulations and a physical realization based on an electronic analog implementation of the model.

Suggested Citation

  • Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
  • Handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:187-198
    DOI: 10.1016/j.chaos.2018.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791831004X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Guoyuan & Chen, Guanrong & Zhang, Yuhui, 2008. "On a new asymmetric chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 409-423.
    2. Jafari, Sajad & Sprott, J.C., 2013. "Simple chaotic flows with a line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 79-84.
    3. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    4. Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.
    5. Singh, Jay Prakash & Roy, B.K., 2016. "The nature of Lyapunov exponents is (+, +, −, −). Is it a hyperchaotic system?," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 73-85.
    6. Ojoniyi, Olurotimi S. & Njah, Abdulahi N., 2016. "A 5D hyperchaotic Sprott B system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 172-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiri Petrzela, 2022. "Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example," Mathematics, MDPI, vol. 10(21), pages 1-28, November.
    2. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Rocha, Ronilson & Medrano-T, Rene Orlando, 2022. "Chua circuit based on the exponential characteristics of semiconductor devices," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Xu, Wanjiang & Shi, Xuerong & Jiang, Haibo & Yu, Jianjiang & Zhang, Liping & Zhuang, Lizhou & Wang, Zuolei, 2024. "A simple 4D no-equilibrium chaotic system with only one quadratic term and its application in pseudo-random number generator," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Chen, Mo & Ren, Xue & Wu, Huagan & Xu, Quan & Bao, Bocheng, 2020. "Interpreting initial offset boosting via reconstitution in integral domain," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    2. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    4. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
    6. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Lai, Qiang & Nestor, Tsafack & Kengne, Jacques & Zhao, Xiao-Wen, 2018. "Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 92-102.
    8. Singh, Jay Prakash & Roy, Binoy Krishna & Jafari, Sajad, 2018. "New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 243-257.
    9. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    11. Pham, Viet–Thanh & Jafari, Sajad & Volos, Christos & Kapitaniak, Tomasz, 2016. "A gallery of chaotic systems with an infinite number of equilibrium points," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 58-63.
    12. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    13. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    14. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Marius-F. Danca, 2020. "Coexisting Hidden and self-excited attractors in an economic system of integer or fractional order," Papers 2008.12108, arXiv.org, revised Sep 2020.
    16. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    17. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    18. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    19. Du Mingjing & Yulan Wang, 2019. "Some Novel Complex Dynamic Behaviors of a Class of Four-Dimensional Chaotic or Hyperchaotic Systems Based on a Meshless Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    20. Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:187-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.