IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001478.html
   My bibliography  Save this article

On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study

Author

Listed:
  • Kamdjeu Kengne, Léandre
  • Mboupda Pone, Justin Roger
  • Fotsin, Hilaire Bertrand

Abstract

It is widely accepted that for any physical system, symmetries are rarely exact. Therefore, some symmetry imperfections must be always assumed to be present. The dynamics of memristor-based chaotic circuits with symmetric hysteresis loop is well documented. However, only a few works are devoted to the dynamics of these types of circuits when the current-voltage characteristic of the considered memristor is no longer symmetrical. Accordingly, we consider in this work (as a case study) the dynamics of a generalized memristive diode-bridge-based jerk circuit whose symmetry can be varied. We denote by k the dissymmetry coefficient. The tools used for the analysis are the Routh-Hurwitz criterion, bifurcation diagrams, phase portraits, and basins of attraction. It is shown that in the symmetric configuration (i.e. when k=1.0) there are three symmetric equilibria whereas in the asymmetric configuration (i.e. when k≠1.0) we always have two equilibrium with fixed position in state space and a third one whose location varies according to the value of the dissymmetry coefficient. The intrinsic nonlinearity of the memristor is responsible for the plethora of nonlinear and complex behaviours observed in both configurations. These include the coexistence of symmetric and asymmetric attractors, coexisting symmetric and asymmetric bubbles of bifurcation, and symmetric and asymmetric double-scroll chaotic attractors, just to name a few. In addition, the experimental investigations agree well with the results of theoretical and numerical studies.

Suggested Citation

  • Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001478
    DOI: 10.1016/j.chaos.2021.110795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Zhi-Jiang & Chen, Yi-Xi & Zheng, Yi-Yin & Chen, Xiong-Wei & Liu, Bin, 2020. "Symmetry breaking of a matter-wave soliton in a double-well potential formed by spatially confined spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.
    3. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    4. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    5. Xu, Quan & Lin, Yi & Bao, Bocheng & Chen, Mo, 2016. "Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 186-200.
    6. Hong-Yu Wu & Jin-Xi Fei & Zheng-Yi Ma & Jun-Chao Chen & Wen-Xiu Ma, 2020. "Symmetry Breaking Soliton, Breather, and Lump Solutions of a Nonlocal Kadomtsev–Petviashvili System," Complexity, Hindawi, vol. 2020, pages 1-13, March.
    7. Léandre Kamdjeu Kengne & Jacques Kengne & Justin Roger Mboupda Pone & Hervé Thierry Kamdem Tagne, 2020. "Symmetry Breaking, Coexisting Bubbles, Multistability, and Its Control for a Simple Jerk System with Hyperbolic Tangent Nonlinearity," Complexity, Hindawi, vol. 2020, pages 1-24, April.
    8. Lai, Qiang & Norouzi, Benyamin & Liu, Feng, 2018. "Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 230-245.
    9. Njitacke, Z.T. & kengne, J. & Fotsin, H.B. & Negou, A. Nguomkam & Tchiotsop, D., 2016. "Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 180-197.
    10. Hanias, M.P. & Giannaris, G. & Spyridakis, A. & Rigas, A., 2006. "Time series analysis in chaotic diode resonator circuit," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 569-573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Ramadoss, Janarthanan & Kengne, Jacques & Kengnou Telem, Adélaïde Nicole & Rajagopal, Karthikeyan, 2022. "Broken symmetry and dynamics of a memristive diodes bridge-based Shinriki oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    2. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Bodo, B. & Armand Eyebe Fouda, J.S. & Mvogo, A. & Tagne, S., 2018. "Experimental hysteresis in memristor based Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 190-195.
    4. Njimah, Ouzerou Mouncherou & Ramadoss, Janarthanan & Telem, Adelaide Nicole Kengnou & Kengne, Jacques & Rajagopal, Karthikeyan, 2023. "Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: Theoretical analysis and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Negou, A. Nguomkam & kengne, J. & Tchiotsop, D., 2018. "Periodicity, chaos and multiple coexisting attractors in a generalized Moore–Spiegel system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 275-289.
    6. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    7. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Mo Chen & Yang Feng & Han Bao & Bocheng Bao & Huagan Wu & Quan Xu, 2019. "Hybrid State Variable Incremental Integral for Reconstructing Extreme Multistability in Memristive Jerk System with Cubic Nonlinearity," Complexity, Hindawi, vol. 2019, pages 1-16, June.
    9. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    10. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Kengne, Jacques & Mogue, Ruth Line Tagne & Fozin, Theophile Fonzin & Telem, Adelaide Nicole Kengnou, 2019. "Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: Coexisting multiple attractors, period doubling reversals, crisis, and offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 63-84.
    13. Ningning Yang & Shucan Cheng & Chaojun Wu & Rong Jia & Chongxin Liu, 2019. "Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor," Complexity, Hindawi, vol. 2019, pages 1-15, May.
    14. Huagan Wu & Han Bao & Quan Xu & Mo Chen, 2019. "Abundant Coexisting Multiple Attractors’ Behaviors in Three-Dimensional Sine Chaotic System," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    15. Wu, H. & Zhou, J. & Chen, M. & Xu, Q. & Bao, B., 2022. "DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    16. Kengne, J. & Njikam, S.M. & Signing, V.R. Folifack, 2018. "A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 201-213.
    17. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    18. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    19. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
    20. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.