IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v108y2018icp182-186.html
   My bibliography  Save this article

Extreme multi-stability: When imperfection changes quality

Author

Listed:
  • Jafari, Sajad
  • Ahmadi, Atefeh
  • Panahi, Shirin
  • Rajagopal, Karthikeyan

Abstract

In this paper, we discuss how chaotic systems show the importance of imperfection. This happens through the butterfly effect. Then we discuss that chaotic systems with extreme multi-stability can much better demonstrate such importance. The reason is that in such systems not only the quantity of time-series is affected by butterfly effect, but also the quality of time-series is changed by small imperfections in parameters or initial conditions. We prove the importance of that difference better by comparing the efficiency of a newly proposed parameter estimation method on both an ordinary chaotic system and a chaotic system with extreme multi-stability.

Suggested Citation

  • Jafari, Sajad & Ahmadi, Atefeh & Panahi, Shirin & Rajagopal, Karthikeyan, 2018. "Extreme multi-stability: When imperfection changes quality," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 182-186.
  • Handle: RePEc:eee:chsofr:v:108:y:2018:i:c:p:182-186
    DOI: 10.1016/j.chaos.2018.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918300535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    2. Bao, B.C. & Bao, H. & Wang, N. & Chen, M. & Xu, Q., 2017. "Hidden extreme multistability in memristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 102-111.
    3. Peng, Bo & Liu, Bo & Zhang, Fu-Yi & Wang, Ling, 2009. "Differential evolution algorithm-based parameter estimation for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2110-2118.
    4. Kingni, Sifeu Takougang & Pham, Viet-Thanh & Jafari, Sajad & Woafo, Paul, 2017. "A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 209-218.
    5. Nazarimehr, Fahimeh & Sheikh, Javad & Ahmadi, Mohammad Mahdi & Pham, Viet–Thanh & Jafari, Sajad, 2018. "Fuzzy predictive controller for chaotic flows based on continuous signals," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 349-354.
    6. dos Santos Coelho, Leandro, 2009. "Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1504-1514.
    7. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation for time-delay chaotic system by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1391-1398.
    8. Li, Lixiang & Yang, Yixian & Peng, Haipeng & Wang, Xiangdong, 2006. "Parameters identification of chaotic systems via chaotic ant swarm," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1204-1211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Han & Rong, Kang & Chen, Mo & Zhang, Xi & Bao, Bocheng, 2023. "Multistability and synchronization of discrete maps via memristive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Yunzhen Zhang & Zhong Liu & Mo Chen & Huagan Wu & Shengyao Chen & Bocheng Bao, 2019. "Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    3. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    6. Zhang, Yunzhen & Liu, Zhong & Wu, Huagan & Chen, Shengyao & Bao, Bocheng, 2019. "Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 354-363.
    7. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    8. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation of chaotic system with time-delay: A differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3132-3139.
    2. Banerjee, Amit & Abu-Mahfouz, Issam, 2014. "A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 65-83.
    3. Li, Nianqiang & Pan, Wei & Yan, Lianshan & Luo, Bin & Xu, Mingfeng & Jiang, Ning & Tang, Yilong, 2011. "On joint identification of the feedback parameters for hyperchaotic systems: An optimization-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 198-207.
    4. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    5. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation for time-delay chaotic system by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1391-1398.
    6. Torres, Lizeth & Besançon, Gildas & Georges, Didier & Verde, Cristina, 2012. "Exponential nonlinear observer for parametric identification and synchronization of chaotic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 836-846.
    7. Strebel, Oliver, 2013. "A preprocessing method for parameter estimation in ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 93-104.
    8. Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Kengne, Jacques & Jafari, Sajad & Pham, Viet-Thanh, 2018. "A new four-dimensional system containing chaotic or hyper-chaotic attractors with no equilibrium, a line of equilibria and unstable equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 108-118.
    9. Qasim M. Zainel & Saad M. Darwish & Murad B. Khorsheed, 2022. "Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    10. Li, Chaoshun & Zhou, Jianzhong & Xiao, Jian & Xiao, Han, 2012. "Parameters identification of chaotic system by chaotic gravitational search algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 539-547.
    11. Tang, Yinggan & Cui, Mingyong & Li, Lixiang & Peng, Haipeng & Guan, Xinping, 2009. "Parameter identification of time-delay chaotic system using chaotic ant swarm," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2097-2102.
    12. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    15. Ahmad Taher Azar & Ngo Mouelas Adele & Kammogne Soup Tewa Alain & Romanic Kengne & Fotsin Hilaire Bertrand, 2018. "Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-12, January.
    16. Jafari, Sajad & Dehghan, Soroush & Chen, Guanrong & Kingni, Sifeu Takougang & Rajagopal, Karthikeyan, 2018. "Twin birds inside and outside the cage," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 135-140.
    17. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    18. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    19. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    20. G. H. Kom & J. Kengne & J. R. Mboupda Pone & G. Kenne & A. B. Tiedeu, 2018. "Asymmetric Double Strange Attractors in a Simple Autonomous Jerk Circuit," Complexity, Hindawi, vol. 2018, pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:108:y:2018:i:c:p:182-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.