IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i22p4613-d1278042.html
   My bibliography  Save this article

Hidden Dynamics of a New Jerk-like System with a Smooth Memristor and Applications in Image Encryption

Author

Listed:
  • Zuolei Wang

    (School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China)

  • Lizhou Zhuang

    (School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China)

  • Jianjiang Yu

    (School of Information Engineering, Yancheng Teachers University, Yancheng 224002, China)

  • Haibo Jiang

    (School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China)

  • Wanjiang Xu

    (School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China)

  • Xuerong Shi

    (School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China)

Abstract

Considering the dynamic characteristics of memristors, a new Jerk-like system without an equilibrium point is addressed based on a Jerk-like system, and the hidden dynamics are investigated. When changing system parameter b and fixing other parameters, the proposed system shows various hidden attractors, such as a hidden chaotic attractor ( b = 5), a hidden period-1 attractor ( b = 3.2), and a hidden period-2 attractor ( b = 4). Furthermore, bifurcation analysis suggests that not only parameter b , but also the initial conditions of the system, have an effect on the hidden dynamics of the discussed system. The coexistence of various hidden attractors is explored and different coexistences of hidden attractors can be found for suitable system parameters. Offset boosting of different hidden attractors is discussed. It is observed that offset boosting can occur for hidden chaotic attractor, period-1 attractor, and period-2 attractor, but not for period-3 attractor and period-4 attractor. The antimonotonicity of the proposed system is debated and a full Feigenbaum remerging tree can be detected when system parameters a or b change within a certain range. On account of the complicated dynamics of the proposed system, an image encryption scheme is designed, and its encryption effectiveness is analyzed via simulation and comparison.

Suggested Citation

  • Zuolei Wang & Lizhou Zhuang & Jianjiang Yu & Haibo Jiang & Wanjiang Xu & Xuerong Shi, 2023. "Hidden Dynamics of a New Jerk-like System with a Smooth Memristor and Applications in Image Encryption," Mathematics, MDPI, vol. 11(22), pages 1-18, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4613-:d:1278042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/22/4613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/22/4613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. E. Matouk & T. N. Abdelhameed & D. K. Almutairi & M. A. Abdelkawy & M. A. E. Herzallah, 2023. "Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems," Mathematics, MDPI, vol. 11(3), pages 1-13, January.
    2. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    3. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shuqi & Shi, Hang & Musha, Ji'e & Yan, Dengwei & Duan, Shukai & Wang, Lidan, 2022. "Design of heterogeneous time-lags system with multi-stability and its analog circuit," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Zhou, Ling & You, Zhenzhen & Tang, Yun, 2021. "A new chaotic system with nested coexisting multiple attractors and riddled basins," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Sundarapandian Vaidyanathan & Ahmad Taher Azar & Ibrahim A. Hameed & Khaled Benkouider & Esteban Tlelo-Cuautle & Brisbane Ovilla-Martinez & Chang-Hua Lien & Aceng Sambas, 2023. "Bifurcation Analysis, Synchronization and FPGA Implementation of a New 3-D Jerk System with a Stable Equilibrium," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    4. Mahmoud, Emad E. & Trikha, Pushali & Jahanzaib, Lone Seth & Almaghrabi, Omar A., 2020. "Dynamical analysis and chaos control of the fractional chaotic ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Cristian Lăzureanu & Jinyoung Cho, 2023. "On Hopf and Fold Bifurcations of Jerk Systems," Mathematics, MDPI, vol. 11(20), pages 1-15, October.
    6. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Rech, Paulo C., 2022. "Self-excited and hidden attractors in a multistable jerk system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Chen, Mo & Wang, Chao & Bao, Han & Ren, Xue & Bao, Bocheng & Xu, Quan, 2020. "Reconstitution for interpreting hidden dynamics with stable equilibrium point," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Leutcho, Gervais Dolvis & Jafari, Sajad & Hamarash, Ibrahim Ismael & Kengne, Jacques & Tabekoueng Njitacke, Zeric & Hussain, Iqtadar, 2020. "A new megastable nonlinear oscillator with infinite attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Sun, Xi & Yan, Shaohui & Zhang, Yuyan & Wang, Ertong & Wang, Qiyu & Gu, Binxian, 2022. "Bursting dynamics and the zero-Hopf bifurcation of simple jerk system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Chen, Mo & Wang, Ankai & Wang, Chao & Wu, Huagan & Bao, Bocheng, 2022. "DC-offset-induced hidden and asymmetric dynamics in Memristive Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Ramadoss, Janarthanan & Kengne, Jacques & Koinfo, Jean Baptiste & Rajagopal, Karthikeyan, 2022. "Multiple Hopf bifurcations, period-doubling reversals and coexisting attractors for a novel chaotic jerk system with Tchebytchev polynomials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    14. Boui A Boya, Bertrand Frederick & Ramakrishnan, Balamurali & Effa, Joseph Yves & Kengne, Jacques & Rajagopal, Karthikeyan, 2022. "The effects of symmetry breaking on the dynamics of an inertial neural system with a non-monotonic activation function: Theoretical study, asymmetric multistability and experimental investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    15. Yamina Soula & Hadi Jahanshahi & Abdullah A. Al-Barakati & Irene Moroz, 2023. "Dynamics and Global Bifurcations in Two Symmetrically Coupled Non-Invertible Maps," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    16. Zhang, Zefeng & Huang, Lilian & Liu, Jin & Guo, Qiang & Du, Xiuli, 2022. "A new method of constructing cyclic symmetric conservative chaotic systems and improved offset boosting control," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Cai, Xinshan & Liu, Ling & Wang, Yaoyu & Liu, Chongxin, 2021. "A 3D chaotic system with piece-wise lines shape non-hyperbolic equilibria and its predefined-time control," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Xu, Wanjiang & Shi, Xuerong & Jiang, Haibo & Yu, Jianjiang & Zhang, Liping & Zhuang, Lizhou & Wang, Zuolei, 2024. "A simple 4D no-equilibrium chaotic system with only one quadratic term and its application in pseudo-random number generator," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    19. Karawanich, Khunanon & Prommee, Pipat, 2022. "High-complex chaotic system based on new nonlinear function and OTA-based circuit realization," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Bo Sang & Bo Huang, 2020. "Zero-Hopf Bifurcations of 3D Quadratic Jerk System," Mathematics, MDPI, vol. 8(9), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4613-:d:1278042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.