IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v113y2018icp263-274.html
   My bibliography  Save this article

Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity

Author

Listed:
  • Signing, V.R. Folifack
  • Kengne, J.
  • Kana, L.K.

Abstract

In this contribution, a new four-wing chaotic system with a smooth piecewise quadratic nonlinearity is introduced. The novel system is inspired from the cubic one introduced by Sampath et al. (2015). Fundamental properties of the new system are discussed and its complex behaviors are characterized using classical nonlinear diagnostic tools. This system exhibits a rich repertoire of dynamic behaviors when suitable set of parameters are chosen including a single two-wing and four-wing chaotic attractors. Further analysis of the novel system shows that four disconnected coexisting stable states can be observed with different initial values. Moreover, the smooth quadratic nonlinearity is easily implemented by using off-the-shelf electronic components (instead of analog multiplier ship in the case of a cubic nonlinearity). The synchronization and the feasibility of the proposed mathematical model are also presented by developing an adaptive synchronization scheme of two identical four-wing chaotic systems and using PSpice simulations based on an electronic analog of the model.

Suggested Citation

  • Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
  • Handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:263-274
    DOI: 10.1016/j.chaos.2018.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918303783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    2. Chen, Qingfei & Hong, Yiguang & Chen, Guanrong, 2006. "Chaotic behaviors and toroidal/spherical attractors generated by discontinuous dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 293-302.
    3. Bouallegue, Kais & Chaari, Abdessattar & Toumi, Ahmed, 2011. "Multi-scroll and multi-wing chaotic attractor generated with Julia process fractal," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 79-85.
    4. Bao, B.C. & Bao, H. & Wang, N. & Chen, M. & Xu, Q., 2017. "Hidden extreme multistability in memristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 102-111.
    5. Grassi, Giuseppe & Severance, Frank L. & Miller, Damon A., 2009. "Multi-wing hyperchaotic attractors from coupled Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 284-291.
    6. Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.
    7. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    8. Kengne, J. & Njikam, S.M. & Signing, V.R. Folifack, 2018. "A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 201-213.
    9. Chen, Zengqiang & Yang, Yong & Yuan, Zhuzhi, 2008. "A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1187-1196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Sahoo, Shilalipi & Roy, Binoy Krishna, 2022. "A new multi-wing chaotic attractor with unusual variation in the number of wings," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Peng, Hongxin & Ji’e, Musha & Du, Xinyu & Duan, Shukai & Wang, Lidan, 2023. "Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    5. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    8. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    9. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    10. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    11. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Xianyang Xie & Shiping Wen & Yuming Feng & Babatunde Oluwaseun Onasanya, 2022. "Three-Stage-Impulse Control of Memristor-Based Chen Hyper-Chaotic System," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    13. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    14. Leutcho, Gervais Dolvis & Jafari, Sajad & Hamarash, Ibrahim Ismael & Kengne, Jacques & Tabekoueng Njitacke, Zeric & Hussain, Iqtadar, 2020. "A new megastable nonlinear oscillator with infinite attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Yunzhen Zhang & Zhong Liu & Mo Chen & Huagan Wu & Shengyao Chen & Bocheng Bao, 2019. "Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    16. Akgül, Akif & Rajagopal, Karthikeyan & Durdu, Ali & Pala, Muhammed Ali & Boyraz, Ömer Faruk & Yildiz, Mustafa Zahid, 2021. "A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Aguirre-Hernández, B. & Campos-Cantón, E. & López-Renteria, J.A. & Díaz González, E.C., 2015. "A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 100-106.
    18. Zhang, Yunzhen & Liu, Zhong & Wu, Huagan & Chen, Shengyao & Bao, Bocheng, 2019. "Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 354-363.
    19. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    20. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:263-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.