IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i2p569-573.html
   My bibliography  Save this article

Time series analysis in chaotic diode resonator circuit

Author

Listed:
  • Hanias, M.P.
  • Giannaris, G.
  • Spyridakis, A.
  • Rigas, A.

Abstract

A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension ν and mmin, respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated.

Suggested Citation

  • Hanias, M.P. & Giannaris, G. & Spyridakis, A. & Rigas, A., 2006. "Time series analysis in chaotic diode resonator circuit," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 569-573.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:569-573
    DOI: 10.1016/j.chaos.2005.03.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905003565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.03.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Njimah, Ouzerou Mouncherou & Ramadoss, Janarthanan & Telem, Adelaide Nicole Kengnou & Kengne, Jacques & Rajagopal, Karthikeyan, 2023. "Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: Theoretical analysis and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. G. H. Kom & J. Kengne & J. R. Mboupda Pone & G. Kenne & A. B. Tiedeu, 2018. "Asymmetric Double Strange Attractors in a Simple Autonomous Jerk Circuit," Complexity, Hindawi, vol. 2018, pages 1-16, February.
    3. Ramadoss, Janarthanan & Kengne, Jacques & Kengnou Telem, Adélaïde Nicole & Rajagopal, Karthikeyan, 2022. "Broken symmetry and dynamics of a memristive diodes bridge-based Shinriki oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    4. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    5. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Kengne, Jacques & Mogue, Ruth Line Tagne & Fozin, Theophile Fonzin & Telem, Adelaide Nicole Kengnou, 2019. "Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: Coexisting multiple attractors, period doubling reversals, crisis, and offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 63-84.
    7. Njitacke, Z.T. & kengne, J. & Fotsin, H.B. & Negou, A. Nguomkam & Tchiotsop, D., 2016. "Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 180-197.
    8. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    9. Michael Hanias & Lykourgos Magafas & P. Konstantaki, 2013. "Non Linear Analysis Of S&P Index," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 8(4), pages 125-135, December.
    10. Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:569-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.