IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v72y2002i3-4p565-581.html
   My bibliography  Save this article

Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency

Author

Listed:
  • Chan, K. T.
  • Yu, F. W.

Abstract

This paper reports on the modelling and findings of the energy performance of an air-cooled reciprocating multiple-chiller plant under the conventional head pressure control and the new condensing-temperature control in a subtropical climate. The simulation model was validated using the operating data of an existing chiller plant. As noted from this existing air-cooled reciprocating chiller plant, there was a substantial efficiency drop at part-load resulting from the head pressure control. If operating at variable lower condensing-temperatures based on the established operating mode of the condenser fans and compressors, it is shown that the chiller consumption can be maintained below 2 kW/refrigeration ton throughout the entire range of outdoor temperature and part-load conditions, giving an average efficiency of 1.08 kW/refrigeration ton. The energy imposition due to cycling on more condenser fans can be compensated by the reduced compressor consumption. Potential energy savings of 18.2 and 29% in the annual chiller consumption are achievable by applying the condensing-temperature control to two existing chiller plants studied. This supports the need to develop the condensing-temperature control as an improvement to the conventional head pressure control.

Suggested Citation

  • Chan, K. T. & Yu, F. W., 2002. "Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency," Applied Energy, Elsevier, vol. 72(3-4), pages 565-581, July.
  • Handle: RePEc:eee:appene:v:72:y:2002:i:3-4:p:565-581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00053-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, W. L. & Yik, F. W. H. & Jones, P. & Burnett, J., 2001. "Energy saving by realistic design data for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 70(1), pages 59-75, September.
    2. Chan, K. T. & Chow, W. K., 1998. "Energy impact of commercial-building envelopes in the sub-tropical climate," Applied Energy, Elsevier, vol. 60(1), pages 21-39, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, F.W. & Chan, K.T., 2006. "Improved condenser design and condenser-fan operation for air-cooled chillers," Applied Energy, Elsevier, vol. 83(6), pages 628-648, June.
    2. Yu, F.W. & Chan, K.T., 2010. "Simulation and electricity savings estimation of air-cooled centrifugal chiller system with mist pre-cooling," Applied Energy, Elsevier, vol. 87(4), pages 1198-1206, April.
    3. Lee, W.L. & Lee, S.H., 2007. "Developing a simplified model for evaluating chiller-system configurations," Applied Energy, Elsevier, vol. 84(3), pages 290-306, March.
    4. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    5. Chan, K.T. & Yu, F.W., 2006. "Thermodynamic-behaviour model for air-cooled screw chillers with a variable set-point condensing temperature," Applied Energy, Elsevier, vol. 83(3), pages 265-279, March.
    6. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
    7. Wang, Shengwei & Cui, Jingtan, 2005. "Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method," Applied Energy, Elsevier, vol. 82(3), pages 197-213, November.
    8. Serafín Alonso & Antonio Morán & Miguel Ángel Prada & Perfecto Reguera & Juan José Fuertes & Manuel Domínguez, 2019. "A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study," Energies, MDPI, vol. 12(5), pages 1-28, March.
    9. Yu, F.W. & Chan, K.T., 2007. "Modelling of a condenser-fan control for an air-cooled centrifugal chiller," Applied Energy, Elsevier, vol. 84(11), pages 1117-1135, November.
    10. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    2. Probst, Oliver, 2004. "Cooling load of buildings and code compliance," Applied Energy, Elsevier, vol. 77(2), pages 171-186, February.
    3. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    4. Lee, W.L. & Lee, S.H., 2007. "Developing a simplified model for evaluating chiller-system configurations," Applied Energy, Elsevier, vol. 84(3), pages 290-306, March.
    5. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    6. Lee, W. L. & Yik, F. W. H., 2002. "Framework for formulating a performance-based incentive-rebate scale for the demand-side-energy management scheme for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 73(2), pages 139-166, October.
    7. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    8. Cheng, Qi & Wang, Shengwei & Yan, Chengchu & Xiao, Fu, 2017. "Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings," Applied Energy, Elsevier, vol. 185(P2), pages 1613-1624.
    9. Das, Anooshmita & Annaqeeb, Masab Khalid & Azar, Elie & Novakovic, Vojislav & Kjærgaard, Mikkel Baun, 2020. "Occupant-centric miscellaneous electric loads prediction in buildings using state-of-the-art deep learning methods," Applied Energy, Elsevier, vol. 269(C).
    10. Andrea Ramírez & Martin K. Patel & Kornelis Blok, 2011. "Monitoring Energy Use and Energy Efficiency in the Dutch Service Sector," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 5, Edward Elgar Publishing.
    11. Kunchornrat, Amporn & Namprakai, Pichai & du Pont, Peter T., 2009. "The impacts of climate zones on the energy performance of existing Thai buildings," Resources, Conservation & Recycling, Elsevier, vol. 53(10), pages 545-551.
    12. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
    13. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    14. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    15. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    16. Lee, W.L. & Yik, F.W.H. & Jones, P., 2003. "A strategy for prioritising interactive measures for enhancing energy efficiency of air-conditioned buildings," Energy, Elsevier, vol. 28(8), pages 877-893.
    17. Xiaoyue Zhu & Bo Gao & Xudong Yang & Yanping Yuan & Ji Ni, 2021. "Interactions between the Built Environment and the Energy-Related Behaviors of Occupants in Government Office Buildings," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    18. Lee, W. L. & Yik, F. W. H., 2002. "Regulatory and voluntary approaches for enhancing energy efficiencies of buildings in Hong Kong," Applied Energy, Elsevier, vol. 71(4), pages 251-274, April.
    19. Fang, Hong & Zhao, Dongliang & Yuan, Jinchao & Aili, Ablimit & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2019. "Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model," Applied Energy, Elsevier, vol. 248(C), pages 589-599.
    20. Jiaying Teng & Pengying Wang & Xiaofei Mu & Wan Wang, 2021. "Energy-saving performance analysis of green technology implications for decision-makers of multi-story buildings," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15639-15665, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:72:y:2002:i:3-4:p:565-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.