IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p827-d210391.html
   My bibliography  Save this article

A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study

Author

Listed:
  • Serafín Alonso

    (Grupo de Investigación en Supervisión, Control y Automatización de Procesos Industriales (SUPPRESS), Esc. de Ing. Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain)

  • Antonio Morán

    (Grupo de Investigación en Supervisión, Control y Automatización de Procesos Industriales (SUPPRESS), Esc. de Ing. Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain)

  • Miguel Ángel Prada

    (Grupo de Investigación en Supervisión, Control y Automatización de Procesos Industriales (SUPPRESS), Esc. de Ing. Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain)

  • Perfecto Reguera

    (Grupo de Investigación en Supervisión, Control y Automatización de Procesos Industriales (SUPPRESS), Esc. de Ing. Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain)

  • Juan José Fuertes

    (Grupo de Investigación en Supervisión, Control y Automatización de Procesos Industriales (SUPPRESS), Esc. de Ing. Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain)

  • Manuel Domínguez

    (Grupo de Investigación en Supervisión, Control y Automatización de Procesos Industriales (SUPPRESS), Esc. de Ing. Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain)

Abstract

Large buildings cause more than 20% of the global energy consumption in advanced countries. In buildings such as hospitals, cooling loads represent an important percentage of the overall energy demand (up to 44%) due to the intensive use of heating, ventilation and air conditioning (HVAC) systems among other key factors, so their study should be considered. In this paper, we propose a data-driven analysis for improving the efficiency in multiple-chiller plants. Coefficient of performance (COP) is used as energy efficiency indicator. Data analysis, based on aggregation operations, filtering and data projection, allows us to obtain knowledge from chillers and the whole plant, in order to define and tune management rules. The plant manager software (PMS) that implements those rules establishes when a chiller should be staged up/down and which chiller should be started/stopped according different efficiency criteria. This approach has been applied on the chiller plant at the Hospital of León.

Suggested Citation

  • Serafín Alonso & Antonio Morán & Miguel Ángel Prada & Perfecto Reguera & Juan José Fuertes & Manuel Domínguez, 2019. "A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study," Energies, MDPI, vol. 12(5), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:827-:d:210391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    2. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2018. "Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps," Energies, MDPI, vol. 11(3), pages 1-41, February.
    3. Hong, Tianzhen & Yang, Le & Hill, David & Feng, Wei, 2014. "Data and analytics to inform energy retrofit of high performance buildings," Applied Energy, Elsevier, vol. 126(C), pages 90-106.
    4. Huyen Do & Kristen S. Cetin, 2019. "Data-Driven Evaluation of Residential HVAC System Efficiency Using Energy and Environmental Data," Energies, MDPI, vol. 12(1), pages 1-15, January.
    5. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    6. Chan, K. T. & Yu, F. W., 2002. "Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency," Applied Energy, Elsevier, vol. 72(3-4), pages 565-581, July.
    7. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    8. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
    9. Zeng, Yaohui & Zhang, Zijun & Kusiak, Andrew, 2015. "Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms," Energy, Elsevier, vol. 86(C), pages 393-402.
    10. Perez-Lombard, Luis & Ortiz, Jose & Maestre, Ismael R., 2011. "The map of energy flow in HVAC systems," Applied Energy, Elsevier, vol. 88(12), pages 5020-5031.
    11. Yu, F.W. & Chan, K.T., 2012. "Improved energy management of chiller systems by multivariate and data envelopment analyses," Applied Energy, Elsevier, vol. 92(C), pages 168-174.
    12. Yaolin Lin & Shiquan Zhou & Wei Yang & Long Shi & Chun-Qing Li, 2018. "Development of Building Thermal Load and Discomfort Degree Hour Prediction Models Using Data Mining Approaches," Energies, MDPI, vol. 11(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm," Energies, MDPI, vol. 12(15), pages 1-13, July.
    2. Zulhazmi Hatta Mohamad Munir & Norasikin Ahmad Ludin & Mirratul Mukminah Junedi & Nurfarhana Alyssa Ahmad Affandi & Mohd Adib Ibrahim & Mohd Asri Mat Teridi, 2023. "A Rational Plan of Energy Performance Contracting in an Educational Building: A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    3. Dong Kon Hwang & Jinkyun Cho & Junghwan Moon, 2019. "Feasibility Study on Energy Audit and Data Driven Analysis Procedure for Building Energy Efficiency: Bench-Marking in Korean Hospital Buildings," Energies, MDPI, vol. 12(15), pages 1-18, August.
    4. Guoying Lin & Yuyao Yang & Feng Pan & Sijian Zhang & Fen Wang & Shuai Fan, 2019. "An Optimal Energy-Saving Strategy for Home Energy Management Systems with Bounded Customer Rationality," Future Internet, MDPI, vol. 11(4), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2020. "A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties," Applied Energy, Elsevier, vol. 280(C).
    2. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    3. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    4. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm," Energies, MDPI, vol. 12(15), pages 1-13, July.
    5. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    6. Gerhard Zucker & Usman Habib & Max Blöchle & Florian Judex & Thomas Leber, 2015. "Sanitation and Analysis of Operation Data in Energy Systems," Energies, MDPI, vol. 8(11), pages 1-19, November.
    7. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    8. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    9. Shin, Hakjong & Kwak, Younghoon & Jo, Seng-Kyoun & Kim, Se-Han & Huh, Jung-Ho, 2023. "Development of an optimal mechanical ventilation system control strategy based on weather forecasting data for outdoor air cooling in livestock housing," Energy, Elsevier, vol. 268(C).
    10. Yu, F.W. & Chan, K.T., 2006. "Improved condenser design and condenser-fan operation for air-cooled chillers," Applied Energy, Elsevier, vol. 83(6), pages 628-648, June.
    11. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    12. Ismaen, Rabah & El Mekkawy, Tarek Y. & Pokharel, Shaligram & Al-Salem, Mohammed, 2022. "System requirements and optimization of multi-chillers district cooling plants," Energy, Elsevier, vol. 246(C).
    13. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    14. Yuan, Weixing & Yang, Bo & Yang, Yufei & Ren, Kexian & Xu, Jian & Liao, Yibing, 2015. "Development and experimental study of the characteristics of a prototype miniature vapor compression refrigerator," Applied Energy, Elsevier, vol. 143(C), pages 47-57.
    15. Solano, J.C. & Olivieri, L. & Caamaño-Martín, E., 2017. "Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control," Applied Energy, Elsevier, vol. 206(C), pages 249-266.
    16. Awais Shah & Deqing Huang & Tianpeng Huang & Umar Farid, 2018. "Optimization of BuildingsEnergy Consumption by Designing Sliding Mode Control for Multizone VAV Air Conditioning Systems," Energies, MDPI, vol. 11(11), pages 1-18, October.
    17. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    18. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    19. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    20. Ju-wan Ha & Yu-jin Kim & Kyung-soon Park & Young-hak Song, 2022. "Energy Saving Evaluation with Low Liquid to Gas Ratio Operation in HVAC&R System," Energies, MDPI, vol. 15(19), pages 1-29, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:827-:d:210391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.