IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v82y2005i3p197-213.html
   My bibliography  Save this article

Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method

Author

Listed:
  • Wang, Shengwei
  • Cui, Jingtan

Abstract

An online strategy is developed to detect, diagnose and validate sensor faults in centrifugal chillers. Considering thermophysical characteristics of the water-cooled centrifugal chillers, a dozen sensors of great concern in the chiller-system monitoring and controls were assigned into two models based on principal-component analysis. Each of the two models can group a set of correlated variables and capture the systematic trends of the chillers. The Q-statistic and Q-contribution plot were used to detect and diagnose the sensor faults, respectively. In addition, an approach based on the minimization of squared prediction error of reconstructed vector of variables was used to reconstruct the identified faulty-sensors, i.e., estimate their bias magnitudes. The sensor-fault detection, diagnosis and estimation strategy was validated using an existing building chiller plant while various sensor faults were introduced.

Suggested Citation

  • Wang, Shengwei & Cui, Jingtan, 2005. "Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method," Applied Energy, Elsevier, vol. 82(3), pages 197-213, November.
  • Handle: RePEc:eee:appene:v:82:y:2005:i:3:p:197-213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00195-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, K. T. & Yu, F. W., 2002. "Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency," Applied Energy, Elsevier, vol. 72(3-4), pages 565-581, July.
    2. Ogaji, S. O. T. & Singh, R. & Probert, S. D., 2002. "Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine," Applied Energy, Elsevier, vol. 71(4), pages 321-339, April.
    3. Lee, Won-Yong & House, John M. & Kyong, Nam-Ho, 2004. "Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks," Applied Energy, Elsevier, vol. 77(2), pages 153-170, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Zhimin & Jin, Xinqiao & Yang, Yunyu, 2009. "Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network," Applied Energy, Elsevier, vol. 86(9), pages 1624-1631, September.
    2. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    3. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    4. Junjie Lu & Jinquan Huang & Feng Lu, 2017. "Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle," Energies, MDPI, vol. 10(1), pages 1-15, January.
    5. Lee, W.L. & Lee, S.H., 2007. "Developing a simplified model for evaluating chiller-system configurations," Applied Energy, Elsevier, vol. 84(3), pages 290-306, March.
    6. Yang, Dan & Peng, Xin & Ye, Zhencheng & Lu, Yusheng & Zhong, Weimin, 2021. "Domain adaptation network with uncertainty modeling and its application to the online energy consumption prediction of ethylene distillation processes," Applied Energy, Elsevier, vol. 303(C).
    7. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Chan, K.T. & Yu, F.W., 2006. "Thermodynamic-behaviour model for air-cooled screw chillers with a variable set-point condensing temperature," Applied Energy, Elsevier, vol. 83(3), pages 265-279, March.
    9. Palmé, Thomas & Fast, Magnus & Thern, Marcus, 2011. "Gas turbine sensor validation through classification with artificial neural networks," Applied Energy, Elsevier, vol. 88(11), pages 3898-3904.
    10. Wang, Zhanwei & Wang, Zhiwei & He, Suowei & Gu, Xiaowei & Yan, Zeng Feng, 2017. "Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information," Applied Energy, Elsevier, vol. 188(C), pages 200-214.
    11. William Nelson & Charles Culp, 2023. "FDD in Building Systems Based on Generalized Machine Learning Approaches," Energies, MDPI, vol. 16(4), pages 1-16, February.
    12. Yu, F.W. & Chan, K.T., 2006. "Improved condenser design and condenser-fan operation for air-cooled chillers," Applied Energy, Elsevier, vol. 83(6), pages 628-648, June.
    13. Yu, F.W. & Chan, K.T., 2010. "Simulation and electricity savings estimation of air-cooled centrifugal chiller system with mist pre-cooling," Applied Energy, Elsevier, vol. 87(4), pages 1198-1206, April.
    14. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    15. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    16. Najafi, Massieh & Auslander, David M. & Bartlett, Peter L. & Haves, Philip & Sohn, Michael D., 2012. "Application of machine learning in the fault diagnostics of air handling units," Applied Energy, Elsevier, vol. 96(C), pages 347-358.
    17. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    18. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
    19. Lei, Lei & Wu, Bing & Fang, Xin & Chen, Li & Wu, Hao & Liu, Wei, 2023. "A dynamic anomaly detection method of building energy consumption based on data mining technology," Energy, Elsevier, vol. 263(PA).
    20. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:82:y:2005:i:3:p:197-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.