IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10607-d642335.html
   My bibliography  Save this article

Interactions between the Built Environment and the Energy-Related Behaviors of Occupants in Government Office Buildings

Author

Listed:
  • Xiaoyue Zhu

    (Sichuan Institute of Building Research, Chengdu 610030, China)

  • Bo Gao

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610030, China)

  • Xudong Yang

    (Department of Building Science, Tsinghua University, Beijing 100084, China)

  • Yanping Yuan

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610030, China)

  • Ji Ni

    (Sichuan Institute of Building Research, Chengdu 610030, China)

Abstract

Human behaviors that greatly influence building energy consumption are stimulated by the indoor environment. However, the relative importance of different environmental factors remains unclear. Previous literature mostly focused on single behavior. Holistic study of multiple energy-related behaviors is scarce. To fill the gap, this study investigated 22 government office buildings in Sichuan using questionnaires and field measurement. Environmental factors were ranked based on the two dimensions of “importance level’level” and “satisfaction level”. The key energy-related behaviors were identified by the comparative study between low- and high-energy-consuming buildings. Lastly, interactions between the building energy consumption, indoor environment quality, occupants’ satisfaction, and human behaviors were analyzed. Questionnaires reveal that most occupants consider indoor air quality as the prior “pain point” while feeling satisfied enough with the thermal environment. Although people attach less importance to the acoustic environment, they manifest evident discontent, suggesting that noise control is an urgent imperative. In contrast, occupants are relatively unconcerned with illuminance, which implies the feasibility of saving energy by reasonably reducing lighting requirements of some non-critical areas. The comparative study indicates that increased energy consumption was attributable to extra personal appliances, wasteful air conditioning habits, and the lack of ventilation in summer. The objective environment of high-energy-consuming buildings is slightly better. However, the difference in perceived satisfaction was not obvious. The findings of this study contribute to determining the most noteworthy environmental factor and the key energy-related behaviors and provide reference information for optimizing energy-saving strategies.

Suggested Citation

  • Xiaoyue Zhu & Bo Gao & Xudong Yang & Yanping Yuan & Ji Ni, 2021. "Interactions between the Built Environment and the Energy-Related Behaviors of Occupants in Government Office Buildings," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10607-:d:642335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    2. Lee, W. L. & Yik, F. W. H. & Jones, P. & Burnett, J., 2001. "Energy saving by realistic design data for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 70(1), pages 59-75, September.
    3. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    4. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    5. Jiang, Ping & Chen, Yihui & Xu, Bin & Dong, Wenbo & Kennedy, Erin, 2013. "Building low carbon communities in China: The role of individual’s behaviour change and engagement," Energy Policy, Elsevier, vol. 60(C), pages 611-620.
    6. Olaf von dem Knesebeck & Nico Vonneilich & Tae Jun Kim, 2018. "Public awareness of poverty as a determinant of health: survey results from 23 countries," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(2), pages 165-172, March.
    7. Xiaohuan Xie & Yi Lu & Zhonghua Gou, 2017. "Green Building Pro-Environment Behaviors: Are Green Users Also Green Buyers?," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zikang Ke & Xiaoxin Liu & Hui Zhang & Xueying Jia & Wei Zeng & Junle Yan & Hao Hu & Wong Nyuk Hien, 2023. "Energy Consumption and Carbon Emissions of Nearly Zero-Energy Buildings in Hot Summer and Cold Winter Zones of China," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    2. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    3. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    4. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    5. Wei, Jia & Chen, Hong & Cui, Xiaotong & Long, Ruyin, 2016. "Carbon capability of urban residents and its structure: Evidence from a survey of Jiangsu Province in China," Applied Energy, Elsevier, vol. 173(C), pages 635-649.
    6. Keyvanfar, Ali & Shafaghat, Arezou & Abd Majid, Muhd Zaimi & Bin Lamit, Hasanuddin & Warid Hussin, Mohd & Binti Ali, Kherun Nita & Dhafer Saad, Alshahri, 2014. "User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 277-295.
    7. Chong, Daokun & Zhu, Neng & Luo, Wei & Zhang, Zhiyu, 2019. "Broadening human thermal comfort range based on short-term heat acclimation," Energy, Elsevier, vol. 176(C), pages 418-428.
    8. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    9. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    10. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    11. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    12. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    13. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    14. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    15. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    16. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    17. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort," Renewable Energy, Elsevier, vol. 115(C), pages 183-198.
    18. Girish Rentala & Yimin Zhu & Neil M. Johannsen, 2021. "Impact of Outdoor Temperature Variations on Thermal State in Experiments Using Immersive Virtual Environment," Sustainability, MDPI, vol. 13(19), pages 1-36, September.
    19. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    20. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10607-:d:642335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.