IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v53y2009i10p545-551.html
   My bibliography  Save this article

The impacts of climate zones on the energy performance of existing Thai buildings

Author

Listed:
  • Kunchornrat, Amporn
  • Namprakai, Pichai
  • du Pont, Peter T.

Abstract

The paper is reviewed and proposed new parameters for the overall thermal transfer value (OTTV) calculation corresponding to the real climate zones in Thailand. These parameters are the equivalent temperature difference and the temperature difference, which are affected the estimation of heat gains through building envelope in different parts of the country, including northern, north-eastern, central and southern regions. Accordingly, the impacts of different climate zones on thermal performance are discussed. The study developed new parameters and estimated the OTTV with respect to different climate zones and compared to the current practice. The impacts of equivalent temperature difference of wall materials and temperature difference for glazing were examined and proposed to the existing OTTV calculation. The proposed parameters are significantly expected to the existing building regulation and ultimately reducing the energy consumption in buildings. The study found that the new parameters are influenced to the OTTV of the reference building, which are varied from 9.1, 2.4 and 5% within different climate zones.

Suggested Citation

  • Kunchornrat, Amporn & Namprakai, Pichai & du Pont, Peter T., 2009. "The impacts of climate zones on the energy performance of existing Thai buildings," Resources, Conservation & Recycling, Elsevier, vol. 53(10), pages 545-551.
  • Handle: RePEc:eee:recore:v:53:y:2009:i:10:p:545-551
    DOI: 10.1016/j.resconrec.2009.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344909000445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2009.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khedari, J & Sangprajak, A & Hirunlabh, J, 2002. "Thailand climatic zones," Renewable Energy, Elsevier, vol. 25(2), pages 267-280.
    2. Chan, K. T. & Chow, W. K., 1998. "Energy impact of commercial-building envelopes in the sub-tropical climate," Applied Energy, Elsevier, vol. 60(1), pages 21-39, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    2. Probst, Oliver, 2004. "Cooling load of buildings and code compliance," Applied Energy, Elsevier, vol. 77(2), pages 171-186, February.
    3. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    4. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    5. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    6. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    7. Fang, Hong & Zhao, Dongliang & Yuan, Jinchao & Aili, Ablimit & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2019. "Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model," Applied Energy, Elsevier, vol. 248(C), pages 589-599.
    8. Jiaying Teng & Pengying Wang & Xiaofei Mu & Wan Wang, 2021. "Energy-saving performance analysis of green technology implications for decision-makers of multi-story buildings," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15639-15665, October.
    9. Li, Danny H.W. & Wong, S.L., 2007. "Daylighting and energy implications due to shading effects from nearby buildings," Applied Energy, Elsevier, vol. 84(12), pages 1199-1209, December.
    10. Arif Widiatmojo & Sasimook Chokchai & Isao Takashima & Yohei Uchida & Kasumi Yasukawa & Srilert Chotpantarat & Punya Charusiri, 2019. "Ground-Source Heat Pumps with Horizontal Heat Exchangers for Space Cooling in the Hot Tropical Climate of Thailand," Energies, MDPI, vol. 12(7), pages 1-22, April.
    11. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    12. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    13. Hwang, Ruey-Lung & Shih, Wen-Mei & Lin, Tzu-Ping & Huang, Kuo-Tsang, 2018. "Simplification and adjustment of the energy consumption indices of office building envelopes in response to climate change," Applied Energy, Elsevier, vol. 230(C), pages 460-470.
    14. Chan, K. T. & Yu, F. W., 2002. "Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency," Applied Energy, Elsevier, vol. 72(3-4), pages 565-581, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:53:y:2009:i:10:p:545-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.