IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007761.html
   My bibliography  Save this article

Analysis of the operation of air-cooled chillers with variable-speed fans for advanced energy-saving-oriented control strategies

Author

Listed:
  • Catrini, Pietro
  • La Villetta, M.
  • Kumar, Dhirendran Munith
  • Morale, Massimo
  • Piacentino, Antonio

Abstract

Air-cooled chillers are extensively employed to meet cooling demand in commercial and tertiary sectors. To enhance their performance during part-load operation, variable-speed drives have been integrated into compressors and condenser fans. In existing systems, condenser fans are either operated at a fixed speed or modulated to maintain a predetermined condensing pressure or temperature difference between the refrigerant and outdoor air. In the search for increased efficiency, it is worth investigating innovative control strategies aimed at minimizing energy consumption. A preliminary mapping of chiller performance at different fan speeds, loads, and operating conditions is required to achieve this goal. In this respect, this paper investigates the operation of air-cooled chillers equipped with variable-speed condenser fans, both in the case of constant- and variable-speed compressors. An ad hoc matrix test is adopted to cover appropriate ranges conditions, in terms of load and outdoor air temperatures. Performance maps are developed for a 50-kWc chiller using a 1-D simulator. As the main findings, it may be stated that (i) in the case of the variable-speed chiller, the energy efficiency ratio increases almost linearly with fan speed, resulting in an 8.8% increase when increasing the speed from the nominal to the maximum; (ii) in the case of constant-speed chillers, the system exhibits a different behavior with the cooling capacity and the energy efficiency ratio increasing with the fan speed between 380 and 980 rpm and then decreasing (slightly or sharply, at full and part load respectively) with fan speed between 980 and 1280 rpm, and a percentage increase of EER in the range 7.8–45% is observed. Also, the sensitivity of such results to the system design is investigated, analyzing a chiller equipped with a larger condenser that resulted in achieving minimum energy consumption at an optimal 980 rpm fan speed. Finally, for a constant-speed chiller serving an office building in the Mediterranean, the proposed fan control strategy could yield an electricity saving of up to 12.1% compared to the base case, confirming the potential for energy savings through optimized and system-tailored management of condenser fan speed.

Suggested Citation

  • Catrini, Pietro & La Villetta, M. & Kumar, Dhirendran Munith & Morale, Massimo & Piacentino, Antonio, 2024. "Analysis of the operation of air-cooled chillers with variable-speed fans for advanced energy-saving-oriented control strategies," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007761
    DOI: 10.1016/j.apenergy.2024.123393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.