IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp1869-1880.html
   My bibliography  Save this article

Review and statistical analysis of different global solar radiation sunshine models

Author

Listed:
  • Despotovic, Milan
  • Nedic, Vladimir
  • Despotovic, Danijela
  • Cvetanovic, Slobodan

Abstract

For the optimal design and selection of solar energy conversion systems, as well as for other fields of interest, such as architecture, agriculture, hydrology and ecology, the knowledge of accurate global solar radiation data is extremely important. However, due to the cost and difficulty in solar radiation measurements these data are not easily available for many countries. Therefore many empirical models have been developed by various researchers to predict global solar radiation from readily available data. The number of developed models is relatively high, which makes it difficult to choose the most appropriate one for a particular purpose and site. There are several studies in which authors evaluate different models for specific location. However, there is no comprehensive study in which these models are evaluated in case of global use. The main objective of this study is to evaluate different solar radiation models on global scale, which might be helpful in the selection of the most appropriate and accurate model based on the available sunshine data. Using the radiation data corresponding to 924 sites throughout the world we conducted a detailed statistical analysis of 101 different solar radiation models that are available in literature. Ten statistical indicators were used to assess models performance. In addition, we introduced specific global performance indicator (GPI), by means of which all analyzed models are depicted with a single parameter and easily ranked.

Suggested Citation

  • Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1869-1880
    DOI: 10.1016/j.rser.2015.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115008953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
    2. Said, R. & Mansor, M. & Abuain, T., 1998. "Estimation of global and diffuse radiation at Tripoli," Renewable Energy, Elsevier, vol. 14(1), pages 221-227.
    3. Bakirci, Kadir, 2009. "Models of solar radiation with hours of bright sunshine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2580-2588, December.
    4. Yohanna, Jonathan K. & Itodo, Isaac N. & Umogbai, Victor I., 2011. "A model for determining the global solar radiation for Makurdi, Nigeria," Renewable Energy, Elsevier, vol. 36(7), pages 1989-1992.
    5. Bahel, V. & Srinivasan, R. & Bakhsh, H., 1987. "Statistical comparison of correlations for estimation of global horizontal solar radiation," Energy, Elsevier, vol. 12(12), pages 1309-1316.
    6. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    7. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    8. Toğrul, İnci Türk & Onat, Emin, 2000. "A comparison of estimated and measured values of solar radiation in Elaziğ, Turkey," Renewable Energy, Elsevier, vol. 20(2), pages 243-252.
    9. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    10. Antonanzas-Torres, F. & Cañizares, F. & Perpiñán, O., 2013. "Comparative assessment of global irradiation from a satellite estimate model (CM SAF) and on-ground measurements (SIAR): A Spanish case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 248-261.
    11. Gopinathan, K.K. & Soler, Alfonso, 1992. "A sunshine dependent global insolation model for latitudes between 60°N and 70°N," Renewable Energy, Elsevier, vol. 2(4), pages 401-404.
    12. Aksoy, Bülent, 1997. "Estimated monthly average global radiation for Turkey and its comparison with observations," Renewable Energy, Elsevier, vol. 10(4), pages 625-633.
    13. Almorox, J. & Benito, M. & Hontoria, C., 2005. "Estimation of monthly Angström–Prescott equation coefficients from measured daily data in Toledo, Spain," Renewable Energy, Elsevier, vol. 30(6), pages 931-936.
    14. Toğrul, İnci Türk & Toğrul, Hasan & Evin, Dugyu, 2000. "Estimation of monthly global solar radiation from sunshine duration measurement in Elaziğ," Renewable Energy, Elsevier, vol. 19(4), pages 587-595.
    15. Veeran, P.K. & Kumar, S., 1993. "Analysis of monthly average daily global radiation and monthly average sunshine duration at two tropical locations," Renewable Energy, Elsevier, vol. 3(8), pages 935-939.
    16. Rehman, Shafiqur, 1998. "Solar radiation over Saudi Arabia and comparisons with empirical models," Energy, Elsevier, vol. 23(12), pages 1077-1082.
    17. Bertrand, Cédric & Vanderveken, Gilles & Journée, Michel, 2015. "Evaluation of decomposition models of various complexity to estimate the direct solar irradiance over Belgium," Renewable Energy, Elsevier, vol. 74(C), pages 618-626.
    18. Maduekwe, A.A.L. & Chendo, M.A.C., 1995. "Predicting the components of the total hemispherical solar radiation from sunshine duration measurements in Lagos, Nigeria," Renewable Energy, Elsevier, vol. 6(7), pages 807-812.
    19. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong & Zhao, Liang, 2011. "Global solar radiation estimation with sunshine duration in Tibet, China," Renewable Energy, Elsevier, vol. 36(11), pages 3141-3145.
    20. Karakoti, Indira & Pande, Bimal & Pandey, Kavita, 2011. "Evaluation of different diffuse radiation models for Indian stations and predicting the best fit model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2378-2384, June.
    21. Bahel, V. & Srinivasan, R. & Bakhsh, H., 1986. "Solar radiation for Dhahran, Saudi Arabia," Energy, Elsevier, vol. 11(10), pages 985-989.
    22. Hove, T. & Manyumbu, E. & Rukweza, G., 2014. "Developing an improved global solar radiation map for Zimbabwe through correlating long-term ground- and satellite-based monthly clearness index values," Renewable Energy, Elsevier, vol. 63(C), pages 687-697.
    23. Bahel, V. & Bakhsh, H. & Srinivasan, R., 1987. "A correlation for estimation of global solar radiation," Energy, Elsevier, vol. 12(2), pages 131-135.
    24. Adaramola, Muyiwa S., 2012. "Estimating global solar radiation using common meteorological data in Akure, Nigeria," Renewable Energy, Elsevier, vol. 47(C), pages 38-44.
    25. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    26. Katiyar, A.K. & Pandey, Chanchal Kumar, 2010. "Simple correlation for estimating the global solar radiation on horizontal surfaces in India," Energy, Elsevier, vol. 35(12), pages 5043-5048.
    27. Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
    28. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makade, Rahul G. & Jamil, Basharat, 2018. "Statistical analysis of sunshine based global solar radiation (GSR) models for tropical wet and dry climatic Region in Nagpur, India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 22-43.
    2. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    3. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    4. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    5. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    6. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    7. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    8. Bakirci, Kadir, 2009. "Models of solar radiation with hours of bright sunshine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2580-2588, December.
    9. Paulescu, M. & Stefu, N. & Calinoiu, D. & Paulescu, E. & Pop, N. & Boata, R. & Mares, O., 2016. "Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 495-506.
    10. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    11. Halawa, Edward & GhaffarianHoseini, AmirHosein & Hin Wa Li, Danny, 2014. "Empirical correlations as a means for estimating monthly average daily global radiation: A critical overview," Renewable Energy, Elsevier, vol. 72(C), pages 149-153.
    12. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    13. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    14. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    16. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    17. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    18. Samuel Chukwujindu, Nwokolo, 2017. "A comprehensive review of empirical models for estimating global solar radiation in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 955-995.
    19. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    20. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1869-1880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.