IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924005361.html
   My bibliography  Save this article

Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s

Author

Listed:
  • Yuan, Hong
  • Ma, Minda
  • Zhou, Nan
  • Xie, Hui
  • Ma, Zhili
  • Xiang, Xiwang
  • Ma, Xin

Abstract

The transportation sector is the third-largest global energy consumer and emitter, making it a focal point in the transition toward the net-zero future. To accelerate the decarbonization of passenger cars, this work is the first to propose a bottom-up charging demand model to estimate the operational electricity use and associated carbon emissions of best-selling battery electric vehicles (BEVs) in various climate zones in China during the 2020s. The findings reveal that (1) the operational energy demand of the top-20 selling BEV models in China, such as Tesla, Wuling Hongguang, and BYD, increased from 601 to 3054 giga-watt hours (GWh) during 2020–2022, with BEVs in South China contributing more than half of the total electricity demand; (2) from 2020 to 2022, the energy and carbon intensities of the best-selling models decreased from 1364 to 1095 kilowatt-hour per vehicle and from 797 to 621 kilograms of carbon dioxide (CO2) per vehicle, respectively, with North China experiencing the highest intensity decline compared to that in other regions; and (3) the operational energy demand of BEV stocks in China increased from 4774 to 12,048 GWh during 2020–2022, while the carbon emissions of BEV stocks rose to 6.8 mega-tons of CO2 in 2022, reflecting an annual growth rate of ~50%. In summary, this work delves into the examination and contrast of benchmark data on a nation-regional scale, as well as performance metrics related to BEV chargings. The primary aim is to support nationwide efforts in decarbonization, aiming for carbon mitigation and facilitating the swift evolution of passenger cars toward a carbon-neutral future.

Suggested Citation

  • Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005361
    DOI: 10.1016/j.apenergy.2024.123153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galvin, Ray, 2022. "Are electric vehicles getting too big and heavy? Modelling future vehicle journeying demand on a decarbonized US electricity grid," Energy Policy, Elsevier, vol. 161(C).
    2. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jiang, Hong-Dian & Xue, Mei-Mei & Liang, Qiao-Mei & Masui, Toshihiko & Ren, Zhong-Yuan, 2022. "How do demand-side policies contribute to the electrification and decarburization of private transportation in China? A CGE-based analysis," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    5. Wei, Hongqian & Zhang, Youtong & Wang, Yongzhen & Hua, Weiqi & Jing, Rui & Zhou, Yue, 2022. "Planning integrated energy systems coupling V2G as a flexible storage," Energy, Elsevier, vol. 239(PB).
    6. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    7. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    8. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    9. Dong, Kangyin & Li, Jiaman & Zhang, Haoran, 2023. "LNG point supply of villages and towns in China: Challenges and countermeasures," Applied Energy, Elsevier, vol. 334(C).
    10. Zou, Yuan & Wei, Shouyang & Sun, Fengchun & Hu, Xiaosong & Shiao, Yaojung, 2016. "Large-scale deployment of electric taxis in Beijing: A real-world analysis," Energy, Elsevier, vol. 100(C), pages 25-39.
    11. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    12. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    13. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Soria Alcaide, Rafael, 2023. "Carbon footprint of battery electric vehicles considering average and marginal electricity mix," Energy, Elsevier, vol. 268(C).
    15. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    16. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    17. Lee, Gwangryeol & Song, Jingeun & Han, Jungwon & Lim, Yunsung & Park, Suhan, 2023. "Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions," Energy, Elsevier, vol. 283(C).
    18. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    19. Zhang, Shufan & Zhou, Nan & Feng, Wei & Ma, Minda & Xiang, Xiwang & You, Kairui, 2023. "Pathway for decarbonizing residential building operations in the US and China beyond the mid-century," Applied Energy, Elsevier, vol. 342(C).
    20. Shiqi Ou & Rujie Yu & Zhenhong Lin & Huanhuan Ren & Xin He & Steven Przesmitzki & Jessey Bouchard, 2020. "Intensity and daily pattern of passenger vehicle use by region and class in China: estimation and implications for energy use and electrification," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 307-327, March.
    21. Yu, Quanqing & Nie, Yuwei & Peng, Simin & Miao, Yifan & Zhai, Chengzhi & Zhang, Runfeng & Han, Jinsong & Zhao, Shuo & Pecht, Michael, 2023. "Evaluation of the safety standards system of power batteries for electric vehicles in China," Applied Energy, Elsevier, vol. 349(C).
    22. Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
    23. Bi, Jun & Wang, Yongxing & Sai, Qiuyue & Ding, Cong, 2019. "Estimating remaining driving range of battery electric vehicles based on real-world data: A case study of Beijing, China," Energy, Elsevier, vol. 169(C), pages 833-843.
    24. Yuan, Hong & Ma, Xin & Ma, Minda & Ma, Juan, 2024. "Hybrid framework combining grey system model with Gaussian process and STL for CO2 emissions forecasting in developed countries," Applied Energy, Elsevier, vol. 360(C).
    25. Cheng, Cheng & Dong, Kangyin & Wang, Zhen & Liu, Shulin & Jurasz, Jakub & Zhang, Haoran, 2023. "Rethinking the evaluation of solar photovoltaic projects under YieldCo mode: A real option perspective," Applied Energy, Elsevier, vol. 336(C).
    26. Zhu, Guangyan & Tian, Yajun & Liu, Min & Zhao, Yating & Wang, Wen & Wang, Minghua & Li, Quansheng & Xie, Kechang, 2023. "Comprehensive competitiveness assessment of ammonia-hydrogen fuel cell electric vehicles and their competitive routes," Energy, Elsevier, vol. 285(C).
    27. Ghafoori, Mahdi & Abdallah, Moatassem & Kim, Serena, 2023. "Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system," Applied Energy, Elsevier, vol. 340(C).
    28. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    29. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    30. Genov, Evgenii & Cauwer, Cedric De & Kriekinge, Gilles Van & Coosemans, Thierry & Messagie, Maarten, 2024. "Forecasting flexibility of charging of electric vehicles: Tree and cluster-based methods," Applied Energy, Elsevier, vol. 353(PA).
    31. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    32. Cedric De Cauwer & Wouter Verbeke & Thierry Coosemans & Saphir Faid & Joeri Van Mierlo, 2017. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions," Energies, MDPI, vol. 10(5), pages 1-18, May.
    33. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Liu, Li-Jing & Zhang, Yu-Fei, 2023. "Improving the regional deployment of carbon mitigation efforts by incorporating air-quality co-benefits: A multi-provincial analysis of China," Ecological Economics, Elsevier, vol. 204(PA).
    34. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Msefula, Griffin & Hou, Tony Chieh-Tse & Lemesi, Tina, 2024. "Dynamics of legal structure and geopolitical influence on carbon tax in response to green transportation," Applied Energy, Elsevier, vol. 371(C).
    2. Shufan Zhang & Minda Ma & Nan Zhou & Jinyue Yan & Wei Feng & Ran Yan & Kairui You & Jingjing Zhang & Jing Ke, 2024. "Estimation of Global Building Stocks by 2070: Unlocking Renovation Potential," Papers 2406.04074, arXiv.org.
    3. Zhong, Wenli & Liu, Yang & Dong, Kangyin & Ni, Guohua, 2024. "Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China," Energy Economics, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    2. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    3. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    4. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).
    5. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    6. Choi, Mingi & Cha, Junepyo & Song, Jingeun, 2024. "Analysis of fuel economy reduction factors of hybrid electric vehicles in winter using on-road driving data," Energy, Elsevier, vol. 289(C).
    7. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    8. Shufan Zhang & Minda Ma & Nan Zhou & Jinyue Yan & Wei Feng & Ran Yan & Kairui You & Jingjing Zhang & Jing Ke, 2024. "Estimation of Global Building Stocks by 2070: Unlocking Renovation Potential," Papers 2406.04074, arXiv.org.
    9. Huang, Haichao & Li, Bowen & Wang, Yizhou & Zhang, Zhe & He, Hongdi, 2024. "Analysis of factors influencing energy consumption of electric vehicles: Statistical, predictive, and causal perspectives," Applied Energy, Elsevier, vol. 375(C).
    10. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    11. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    12. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    13. Nepal, Rabindra & Zhao, Xiaomeng & Liu, Yang & Dong, Kangyin, 2024. "Can green finance strengthen energy resilience? The case of China," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    14. Anatole Desreveaux & Alain Bouscayrol & Elodie Castex & Rochdi Trigui & Eric Hittinger & Gabriel-Mihai Sirbu, 2020. "Annual Variation in Energy Consumption of an Electric Vehicle Used for Commuting," Energies, MDPI, vol. 13(18), pages 1-15, September.
    15. Chen, Quanwei & Lai, Xin & Chen, Junjie & Huang, Yunfeng & Guo, Yi & Wang, Yanan & Han, Xuebing & Lu, Languang & Sun, Yuedong & Ouyang, Minggao & Zheng, Yuejiu, 2024. "A critical comparison of LCA calculation models for the power lithium-ion battery in electric vehicles during use-phase," Energy, Elsevier, vol. 296(C).
    16. Zhao, Shujie & Song, Qingbin & Zhao, Dongfeng & Wang, Yongqiang, 2023. "Identifying the spatiotemporal carbon footprint of the petroleum refining industry and its mitigation potential in China," Energy, Elsevier, vol. 284(C).
    17. Seo, Minhwan & Song, Youngbin & Kim, Jake & Paek, Sung Wook & Kim, Gi-Heon & Kim, Sang Woo, 2021. "Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures," Energy, Elsevier, vol. 226(C).
    18. Ma, Yifan & Sun, Wei & Zhao, Zhoulun & Gu, Leqi & Zhang, Hui & Jin, Yucheng & Yuan, Xinmei, 2024. "Physically rational data augmentation for energy consumption estimation of electric vehicles," Applied Energy, Elsevier, vol. 373(C).
    19. Yuan, Hong & Ma, Xin & Ma, Minda & Ma, Juan, 2024. "Hybrid framework combining grey system model with Gaussian process and STL for CO2 emissions forecasting in developed countries," Applied Energy, Elsevier, vol. 360(C).
    20. Klemen Deželak & Klemen Sredenšek & Sebastijan Seme, 2023. "Energy Consumption and Grid Interaction Analysis of Electric Vehicles Based on Particle Swarm Optimisation Method," Energies, MDPI, vol. 16(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.