IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006769.html
   My bibliography  Save this article

Analysis and improvement of flow distribution in manifold for proton exchange membrane fuel cell stacks

Author

Listed:
  • Huang, Fuxiang
  • Qiu, Diankai
  • Xu, Zhutian
  • Peng, Linfa
  • Lai, Xinmin

Abstract

The flow distribution in manifold has significant effect on the output performance of the stack according to the Cannikin Law, especially for multi-cell proton exchange membrane fuel cell (PEMFC) stacks. This study presents an analytical model which simultaneously considered local pressure losses, pressure recovery phenomenon, electrochemical reactions, and liquid water to calculate the flow distribution using the flow network method. Both U-shape and Z-shape flow configuration stack are investigated. The analytical model is simultaneously and quantitatively validated with three distinct variables (the dimensionless mass flow rates, the stack pressure drop and the pressure distribution in manifold) to ensure the accurateness of modelling results. Effects of reactant consumption and two-phase flow in unit cell on the flow distribution are quantitatively investigated. Results show that the flow maldistribution is overestimated when ignoring gas consumption and two-phase flow for both 200-cell U-shape and Z-shape stack. Balance the pressure drop of inlet and outlet manifold significantly improves the flow distribution for U-shape stack. Finally, the differentiated assembly strategy is first proposed to improve the flow distribution in manifold for multi-cell PEMFC stacks. Compared to the original design, the ratios of the improvements for 200-cell U-shape and Z-shape stack are 85% and 25%, respectively.

Suggested Citation

  • Huang, Fuxiang & Qiu, Diankai & Xu, Zhutian & Peng, Linfa & Lai, Xinmin, 2021. "Analysis and improvement of flow distribution in manifold for proton exchange membrane fuel cell stacks," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006769
    DOI: 10.1016/j.energy.2021.120427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Huicui & He, Yuxiang & Zhang, Xinfeng & Zhao, Xin & Zhang, Tong & Pei, Pucheng, 2018. "A method to study the intake consistency of the dual-stack polymer electrolyte membrane fuel cell system under dynamic operating conditions," Applied Energy, Elsevier, vol. 231(C), pages 1050-1058.
    2. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
    4. Kim, Bosung & Cha, Dowon & Kim, Yongchan, 2015. "The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions," Applied Energy, Elsevier, vol. 138(C), pages 143-149.
    5. Chen, Chen-Yu & Su, Sheng-Chun, 2018. "Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates," Energy, Elsevier, vol. 159(C), pages 440-447.
    6. Ashrafi, Moosa & Kanani, Homayoon & Shams, Mehrzad, 2018. "Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields," Energy, Elsevier, vol. 147(C), pages 317-328.
    7. Ijaodola, O.S. & El- Hassan, Zaki & Ogungbemi, E. & Khatib, F.N. & Wilberforce, Tabbi & Thompson, James & Olabi, A.G., 2019. "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 179(C), pages 246-267.
    8. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
    9. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    10. Dabiri, Soroush & Hashemi, Mohammadreza & Rahimi, Mohammadfazel & Bahiraei, Mehdi & Khodabandeh, Erfan, 2018. "Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell," Energy, Elsevier, vol. 152(C), pages 719-731.
    11. Lim, B.H. & Majlan, E.H. & Daud, W.R.W. & Rosli, M.I. & Husaini, T., 2019. "Three-dimensional study of stack on the performance of the proton exchange membrane fuel cell," Energy, Elsevier, vol. 169(C), pages 338-343.
    12. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    13. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Xu, Huachi & Chen, Dongfang & Huang, Shangwei, 2017. "Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management," Applied Energy, Elsevier, vol. 190(C), pages 713-724.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilberforce, Tabbi & Olabi, A.G. & Pritchard, Daniel & Abdelkareem, Mohammad Ali & Sayed, Enas Taha, 2023. "Development of proton exchange membrane fuel cell flow plate geometry design," Energy, Elsevier, vol. 283(C).
    2. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    3. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    4. Shao, Yangbin & Xu, Liangfei & Hu, Zunyan & Xu, Ling & Zhao, Yang & Zhao, Guanlei & Li, Jianqiu & Ouyang, Minggao, 2023. "Investigation on the performance heterogeneity within a fuel cell stack considering non-isopotential of bipolar plates," Energy, Elsevier, vol. 263(PB).
    5. Xu, Boshi & Yang, Yang & Li, Jun & Ye, Dingding & Wang, Yang & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "A comprehensive study of parameters distribution in a short PEM water electrolyzer stack utilizing a full-scale multi-physics model," Energy, Elsevier, vol. 300(C).
    6. Yin, Ren-Jie & Zeng, Wen-Chao & Bai, Fan & Chen, Li & Tao, Wen-Quan, 2024. "Study on the effects of manifold structure on the gas flow distribution uniformity of anode of PEMFC stack with 140-cell," Renewable Energy, Elsevier, vol. 221(C).
    7. Yang, Ping & Ling, Weihao & Tian, Ke & Zeng, Min & Wang, Qiuwang, 2023. "Flow distribution and heat transfer performance of two-phase flow in parallel flow heat exchange system," Energy, Elsevier, vol. 270(C).
    8. Bai, Xingying & Luo, Lizhong & Huang, Bi & Huang, Zhe & Jian, Qifei, 2021. "Flow characteristics analysis for multi-path hydrogen supply within proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 301(C).
    9. Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    10. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    2. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    3. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    4. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    6. Cha, Dowon & Yang, Wonseok & Kim, Yongchan, 2019. "Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions," Energy, Elsevier, vol. 183(C), pages 514-524.
    7. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    8. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    9. Yousefi Tehrani, Mehran & Mirfarsi, Seyed Hesam & Rowshanzamir, Soosan, 2022. "Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study," Renewable Energy, Elsevier, vol. 184(C), pages 182-200.
    10. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    11. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    12. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    13. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).
    15. Eryilmaz, Serkan & Devrim, Yilser, 2019. "Reliability and optimal replacement policy for a k-out-of-n system subject to shocks," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 393-397.
    16. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    18. Zeng, Tao & Xiao, Long & Chen, Jinrui & Li, Yu & Yang, Yi & Huang, Shulong & Deng, Chenghao & Zhang, Caizhi, 2023. "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation," Applied Energy, Elsevier, vol. 335(C).
    19. Pang, Ran & Zhang, Caizhi & Dai, Haifeng & Bai, Yunfeng & Hao, Dong & Chen, Jinrui & Zhang, Bin, 2022. "Intelligent health states recognition of fuel cell by cell voltage consistency under typical operating parameters," Applied Energy, Elsevier, vol. 305(C).
    20. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.