IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224013380.html
   My bibliography  Save this article

A comprehensive study of parameters distribution in a short PEM water electrolyzer stack utilizing a full-scale multi-physics model

Author

Listed:
  • Xu, Boshi
  • Yang, Yang
  • Li, Jun
  • Ye, Dingding
  • Wang, Yang
  • Zhang, Liang
  • Zhu, Xun
  • Liao, Qiang

Abstract

Proton exchange membrane (PEM) electrolyzer is regarded as one of the most promising technologies for hydrogen production. To meet the requirements of large-scale hydrogen production, PEM electrolyzer stack that composed by series units are necessary. However, the composition brings extra problems such as maldistribution from the manifold to each unit, which results in parameters differences among the units and further gives rise to stack degradation. In this study, a full-scale three-dimensional multi-physics model is developed to simulate a short PEM electrolyzer stack with four single electrolyzer units. All the electrolyzer components and connections (e.g. manifold) are included in the model, and the temperature distribution, liquid saturation, membrane water content and electrolyzer performance are investigated in detail. The results indicate that performance of each single electrolyzer decreases from the first to the last unit along the water flow direction. It is recommended that the inlet temperature of electrolyzer stack should not exceed 60°C. To ease the thermal management, the water supply mode for cathode side can obviously lower the stack temperature to a preferred range, and improve the temperature uniformity. This study provides a comprehensive understanding of the distribution behaviors inside the electrolyzer stack and guides the operating parameters optimization.

Suggested Citation

  • Xu, Boshi & Yang, Yang & Li, Jun & Ye, Dingding & Wang, Yang & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "A comprehensive study of parameters distribution in a short PEM water electrolyzer stack utilizing a full-scale multi-physics model," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013380
    DOI: 10.1016/j.energy.2024.131565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qahtan, Talal F. & Alade, Ibrahim O. & Rahaman, Md Safiqur & Saleh, Tawfik A., 2023. "Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Xie, Biao & Zhang, Hanyang & Huo, Wenming & Wang, Renfang & Zhu, Ying & Wu, Lizhen & Zhang, Guobin & Ni, Meng & Jiao, Kui, 2023. "Large-scale three-dimensional simulation of proton exchange membrane fuel cell considering detailed water transition mechanism," Applied Energy, Elsevier, vol. 331(C).
    3. Espinosa-López, Manuel & Darras, Christophe & Poggi, Philippe & Glises, Raynal & Baucour, Philippe & Rakotondrainibe, André & Besse, Serge & Serre-Combe, Pierre, 2018. "Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer," Renewable Energy, Elsevier, vol. 119(C), pages 160-173.
    4. Li, Ang & Song, Ce & Lin, Zijing, 2017. "A multiphysics fully coupled modeling tool for the design and operation analysis of planar solid oxide fuel cell stacks," Applied Energy, Elsevier, vol. 190(C), pages 1234-1244.
    5. Zhang, Guobin & Yuan, Hao & Wang, Yun & Jiao, Kui, 2019. "Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 255(C).
    6. Song, Aifeng & Rasool, Zeeshan & Nazar, Raima & Anser, Muhammad Khalid, 2024. "Towards a greener future: How green technology innovation and energy efficiency are transforming sustainability," Energy, Elsevier, vol. 290(C).
    7. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    8. Huang, Weifeng & Niu, Tong & Zhang, Caizhi & Fu, Zuhang & Zhang, Yuqi & Zhou, Weijiang & Pan, Zehua & Zhang, Kaiqing, 2023. "Experimental study of the performance degradation of proton exchange membrane fuel cell based on a multi-module stack under selected load profiles by clustering algorithm," Energy, Elsevier, vol. 270(C).
    9. Huang, Fuxiang & Qiu, Diankai & Xu, Zhutian & Peng, Linfa & Lai, Xinmin, 2021. "Analysis and improvement of flow distribution in manifold for proton exchange membrane fuel cell stacks," Energy, Elsevier, vol. 226(C).
    10. Rauls, Edward & Hehemann, Michael & Keller, Roger & Scheepers, Fabian & Müller, Martin & Stolten, Detlef, 2023. "Favorable Start-Up behavior of polymer electrolyte membrane water electrolyzers," Applied Energy, Elsevier, vol. 330(PA).
    11. Koponen, Joonas & Ruuskanen, Vesa & Hehemann, Michael & Rauls, Edward & Kosonen, Antti & Ahola, Jero & Stolten, Detlef, 2020. "Effect of power quality on the design of proton exchange membrane water electrolysis systems," Applied Energy, Elsevier, vol. 279(C).
    12. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    13. Lee, Jason K. & Schuler, Tobias & Bender, Guido & Sabharwal, Mayank & Peng, Xiong & Weber, Adam Z. & Danilovic, Nemanja, 2023. "Interfacial engineering via laser ablation for high-performing PEM water electrolysis," Applied Energy, Elsevier, vol. 336(C).
    14. Dang, Jian & Yang, Fuyuan & Li, Yangyang & Zhao, Yingpeng & Ouyang, Minggao & Hu, Song, 2022. "Experiments and microsimulation of high-pressure single-cell PEM electrolyzer," Applied Energy, Elsevier, vol. 321(C).
    15. Cheng, Guishi & Luo, Ercheng & Zhao, Ying & Yang, Yihao & Chen, Binbin & Cai, Youcheng & Wang, Xiaoqiang & Dong, Changqing, 2023. "Analysis and prediction of green hydrogen production potential by photovoltaic-powered water electrolysis using machine learning in China," Energy, Elsevier, vol. 284(C).
    16. Wu, Lizhen & An, Liang & Jiao, Daokuan & Xu, Yifan & Zhang, Guobin & Jiao, Kui, 2022. "Enhanced oxygen discharge with structured mesh channel in proton exchange membrane electrolysis cell," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Boshi & Yang, Yang & Li, Jun & Wang, Yang & Ye, Dingding & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "Computational assessment of response to fluctuating load of renewable energy in proton exchange membrane water electrolyzer," Renewable Energy, Elsevier, vol. 232(C).
    2. Bai, Fan & Tang, Zhiyi & Yin, Ren-Jie & Quan, Hong-Bing & Chen, Lei & Dai, David & Tao, Wen-Quan, 2024. "A novel ‘3D + digital twin + 3D’ upscaling strategy for predicting the detailed multi-physics distributions in a commercial-size proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 374(C).
    3. Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Shao, Yangbin & Xu, Liangfei & Hu, Zunyan & Xu, Ling & Zhao, Yang & Zhao, Guanlei & Li, Jianqiu & Ouyang, Minggao, 2023. "Investigation on the performance heterogeneity within a fuel cell stack considering non-isopotential of bipolar plates," Energy, Elsevier, vol. 263(PB).
    5. Nicolas Muck & Christoph David & Torsten Knöri, 2023. "Integrating Fiber Sensing for Spatially Resolved Temperature Measurement in Fuel Cells," Energies, MDPI, vol. 17(1), pages 1-17, December.
    6. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    7. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    8. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    10. Lyu, Hengyu & Ma, Chunai & Arash, Farnoosh, 2024. "Central environmental protection inspection, green technology innovation and carbon intensity of industrial enterprises – Empirical research based on multi-period differences-in-differences model," Energy, Elsevier, vol. 307(C).
    11. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    12. Miao, Xing-Yuan & Rizvandi, Omid Babaie & Navasa, Maria & Frandsen, Henrik Lund, 2021. "Modelling of local mechanical failures in solid oxide cell stacks," Applied Energy, Elsevier, vol. 293(C).
    13. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    14. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    15. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    16. Ayiguzhali Tuluhong & Qingpu Chang & Lirong Xie & Zhisen Xu & Tengfei Song, 2024. "Current Status of Green Hydrogen Production Technology: A Review," Sustainability, MDPI, vol. 16(20), pages 1-47, October.
    17. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    18. Yang, Ping & Ling, Weihao & Tian, Ke & Zeng, Min & Wang, Qiuwang, 2023. "Flow distribution and heat transfer performance of two-phase flow in parallel flow heat exchange system," Energy, Elsevier, vol. 270(C).
    19. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    20. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.