IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7929-d953093.html
   My bibliography  Save this article

Optimized Data-Driven Models for Short-Term Electricity Price Forecasting Based on Signal Decomposition and Clustering Techniques

Author

Listed:
  • Athanasios Ioannis Arvanitidis

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

  • Dimitrios Bargiotas

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

  • Dimitrios Kontogiannis

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

  • Athanasios Fevgas

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

  • Miltiadis Alamaniotis

    (Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

Abstract

In recent decades, the traditional monopolistic energy exchange market has been replaced by deregulated, competitive marketplaces in which electricity may be purchased and sold at market prices like any other commodity. As a result, the deregulation of the electricity industry has produced a demand for wholesale organized marketplaces. Price predictions, which are primarily meant to establish the market clearing price, have become a significant factor to an energy company’s decision making and strategic development. Recently, the fast development of deep learning algorithms, as well as the deployment of front-end metaheuristic optimization approaches, have resulted in the efficient development of enhanced prediction models that are used for electricity price forecasting. In this paper, the development of six highly accurate, robust and optimized data-driven forecasting models in conjunction with an optimized Variational Mode Decomposition method and the K-Means clustering algorithm for short-term electricity price forecasting is proposed. In this work, we also establish an Inverted and Discrete Particle Swarm Optimization approach that is implemented for the optimization of the Variational Mode Decomposition method. The prediction of the day-ahead electricity prices is based on historical weather and price data of the deregulated Greek electricity market. The resulting forecasting outcomes are thoroughly compared in order to address which of the two proposed divide-and-conquer preprocessing approaches results in more accuracy concerning the issue of short-term electricity price forecasting. Finally, the proposed technique that produces the smallest error in the electricity price forecasting is based on Variational Mode Decomposition, which is optimized through the proposed variation of Particle Swarm Optimization, with a mean absolute percentage error value of 6.15%.

Suggested Citation

  • Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Dimitrios Kontogiannis & Athanasios Fevgas & Miltiadis Alamaniotis, 2022. "Optimized Data-Driven Models for Short-Term Electricity Price Forecasting Based on Signal Decomposition and Clustering Techniques," Energies, MDPI, vol. 15(21), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7929-:d:953093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengran Zhou & Tianyu Hu & Kai Bian & Wenhao Lai & Feng Hu & Oumaima Hamrani & Ziwei Zhu, 2021. "Short-Term Electric Load Forecasting Based on Variational Mode Decomposition and Grey Wolf Optimization," Energies, MDPI, vol. 14(16), pages 1-17, August.
    2. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, March.
    3. Guoqiang Sun & Tong Chen & Zhinong Wei & Yonghui Sun & Haixiang Zang & Sheng Chen, 2016. "A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks," Energies, MDPI, vol. 9(1), pages 1-16, January.
    4. Sajjad Khan & Shahzad Aslam & Iqra Mustafa & Sheraz Aslam, 2021. "Short-Term Electricity Price Forecasting by Employing Ensemble Empirical Mode Decomposition and Extreme Learning Machine," Forecasting, MDPI, vol. 3(3), pages 1-18, June.
    5. Pablo David Necoechea-Porras & Asunción López & Juan Carlos Salazar-Elena, 2021. "Deregulation in the Energy Sector and Its Economic Effects on the Power Sector: A Literature Review," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    6. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    7. Manner, Hans & Türk, Dennis & Eichler, Michael, 2016. "Modeling and forecasting multivariate electricity price spikes," Energy Economics, Elsevier, vol. 60(C), pages 255-265.
    8. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    9. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2020. "Minutely Active Power Forecasting Models Using Neural Networks," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    10. Guoping An & Qingbin Tong & Yanan Zhang & Ruifang Liu & Weili Li & Junci Cao & Yuyi Lin & Qiang Wang & Ying Zhu & Xiaowen Pu, 2021. "A Parameter-Optimized Variational Mode Decomposition Investigation for Fault Feature Extraction of Rolling Element Bearings," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, February.
    11. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    12. Sirin, Selahattin Murat & Erten, Ibrahim, 2022. "Price spikes, temporary price caps, and welfare effects of regulatory interventions on wholesale electricity markets," Energy Policy, Elsevier, vol. 163(C).
    13. Heng-di Wang & Si-er Deng & Jian-xi Yang & Hui Liao & Wen-bo Li, 2020. "Parameter-Adaptive VMD Method Based on BAS Optimization Algorithm for Incipient Bearing Fault Diagnosis," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    2. Vasileios Laitsos & Georgios Vontzos & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2024. "Data-Driven Techniques for Short-Term Electricity Price Forecasting through Novel Deep Learning Approaches with Attention Mechanisms," Energies, MDPI, vol. 17(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    2. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    3. Xiaoming Xie & Meiping Li & Du Zhang, 2021. "A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning," Energies, MDPI, vol. 14(21), pages 1-14, November.
    4. Yan, Guan & Trück, Stefan, 2020. "A dynamic network analysis of spot electricity prices in the Australian national electricity market," Energy Economics, Elsevier, vol. 92(C).
    5. Dorel Mihai Paraschiv & Narciz Balasoiu & Souhir Ben-Amor & Raul Cristian Bag, 2023. "Hybridising Neurofuzzy Model the Seasonal Autoregressive Models for Electricity Price Forecasting on Germany’s Spot Market," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 463-463, April.
    6. Rassi, Samin & Kanamura, Takashi, 2023. "Electricity price spike formation and LNG prices effect under gross bidding scheme in JEPX," Energy Policy, Elsevier, vol. 177(C).
    7. Bikeri Adline & Kazushi Ikeda, 2023. "A Hawkes Model Approach to Modeling Price Spikes in the Japanese Electricity Market," Energies, MDPI, vol. 16(4), pages 1-20, February.
    8. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
    9. Nadja Klein & Michael Stanley Smith & David J. Nott, 2023. "Deep distributional time series models and the probabilistic forecasting of intraday electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 493-511, June.
    10. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    13. repec:dui:wpaper:1502 is not listed on IDEAS
    14. Beltrán, Sergio & Castro, Alain & Irizar, Ion & Naveran, Gorka & Yeregui, Imanol, 2022. "Framework for collaborative intelligence in forecasting day-ahead electricity price," Applied Energy, Elsevier, vol. 306(PA).
    15. Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
    16. Fernandes, Mário Correia & Dias, José Carlos & Nunes, João Pedro Vidal, 2021. "Modeling energy prices under energy transition: A novel stochastic-copula approach," Economic Modelling, Elsevier, vol. 105(C).
    17. Sajjad Khan & Shahzad Aslam & Iqra Mustafa & Sheraz Aslam, 2021. "Short-Term Electricity Price Forecasting by Employing Ensemble Empirical Mode Decomposition and Extreme Learning Machine," Forecasting, MDPI, vol. 3(3), pages 1-18, June.
    18. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    19. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    20. Fraunholz, Christoph & Kraft, Emil & Keles, Dogan & Fichtner, Wolf, 2021. "Advanced price forecasting in agent-based electricity market simulation," Applied Energy, Elsevier, vol. 290(C).
    21. He Jiang & Sheng Pan & Yao Dong & Jianzhou Wang, 2024. "Probabilistic electricity price forecasting based on penalized temporal fusion transformer," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1465-1491, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7929-:d:953093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.