Author
Listed:
- Ruan, Yimin
- Yao, Wei
- Zong, Qihang
- Zhou, Hongyu
- Gan, Wei
- Zhang, Xinhao
- Li, Shaolin
- Wen, Jinyu
Abstract
The increasing integration of renewable energy in power systems causes a decrease in the frequency stability of the system. Consequently, renewable energy stations, such as wind farms (WFs), must possess adequate frequency support capabilities. To maximize the frequency support capability of the WF, it is crucial to determine the frequency support capability boundaries (FSCB) of the WF. Due to the uneven distribution of wind resources and complex operating states of wind turbines, accurate evaluation of the FSCB of the WF is challenging. To address this issue, this paper proposes a knowledge and data-driven fusion Koopman method to assess the FSCB of the doubly fed induction generator (DFIG)-based WF. The characteristics of FSCB are analyzed and a multi-dimensional indicator system is defined to precisely quantify FSCB at both theoretical and practical levels. To accurately calculate the defined indicators, a knowledge and data-driven fusion method based on Koopman-mixed integer linear programming (MILP) is proposed. The knowledge of WF frequency regulation structures is integrated to construct Koopman dictionary functions. This allows the training of historical frequency regulation data to obtain the global linearized Koopman operator for the assessment object. Subsequently, it facilitates online assessment results using real-time data. Case studies are undertaken on the four-machine two-area power system including a DFIG-based WF. The assessment error of the proposed Koopman-MILP method is within 2%, with an assessment speed nearly 10 times faster than conventional nonlinear methods. The proposed dictionary function, compared to the one without integrated knowledge, improves assessment accuracy by nearly 5 times. Additionally, it reveals the impact of frequency regulation strategies, safety operation constraints, and wind resources on FSCB. Simulation results validate the rationality of the proposed indicators, the accuracy of the assessment method, and the practicality of the assessment outcomes under various operating conditions.
Suggested Citation
Ruan, Yimin & Yao, Wei & Zong, Qihang & Zhou, Hongyu & Gan, Wei & Zhang, Xinhao & Li, Shaolin & Wen, Jinyu, 2025.
"Online assessment of frequency support capability of the DFIG-based wind farm using a knowledge and data-driven fusion Koopman method,"
Applied Energy, Elsevier, vol. 377(PB).
Handle:
RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019019
DOI: 10.1016/j.apenergy.2024.124518
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019019. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.