Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.01.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xydas, Erotokritos & Qadrdan, Meysam & Marmaras, Charalampos & Cipcigan, Liana & Jenkins, Nick & Ameli, Hossein, 2017. "Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators," Applied Energy, Elsevier, vol. 192(C), pages 382-394.
- Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
- Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
- De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Error analysis of short term wind power prediction models," Applied Energy, Elsevier, vol. 88(4), pages 1298-1311, April.
- Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
- Khosravi, A. & Machado, L. & Nunes, R.O., 2018. "Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil," Applied Energy, Elsevier, vol. 224(C), pages 550-566.
- Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
- Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
- Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
- Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
- Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
- Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
- Díaz, Santiago & Carta, José A. & Matías, José M., 2018. "Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques," Applied Energy, Elsevier, vol. 209(C), pages 455-477.
- Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
- Pinson, P. & Nielsen, H.Aa. & Madsen, H. & Kariniotakis, G., 2009. "Skill forecasting from ensemble predictions of wind power," Applied Energy, Elsevier, vol. 86(7-8), pages 1326-1334, July.
- Li, Chaoshun & Xiao, Zhengguang & Xia, Xin & Zou, Wen & Zhang, Chu, 2018. "A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 131-144.
- Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
- Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
- Deo, Ravinesh C. & Ghorbani, Mohammad Ali & Samadianfard, Saeed & Maraseni, Tek & Bilgili, Mehmet & Biazar, Mustafa, 2018. "Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data," Renewable Energy, Elsevier, vol. 116(PA), pages 309-323.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
- Yonggang Li & Yue Wang & Binyuan Wu, 2020. "Short-Term Direct Probability Prediction Model of Wind Power Based on Improved Natural Gradient Boosting," Energies, MDPI, vol. 13(18), pages 1-15, September.
- Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
- Severiano, Carlos A. & Silva, Petrônio Cândido de Lima e & Weiss Cohen, Miri & Guimarães, Frederico Gadelha, 2021. "Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems," Renewable Energy, Elsevier, vol. 171(C), pages 764-783.
- Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
- Wang, Jingfan & Tchapmi, Lyne P. & Ravikumar, Arvind P. & McGuire, Mike & Bell, Clay S. & Zimmerle, Daniel & Savarese, Silvio & Brandt, Adam R., 2020. "Machine vision for natural gas methane emissions detection using an infrared camera," Applied Energy, Elsevier, vol. 257(C).
- Arnas Uselis & Mantas Lukoševičius & Lukas Stasytis, 2020. "Localized Convolutional Neural Networks for Geospatial Wind Forecasting," Energies, MDPI, vol. 13(13), pages 1-21, July.
- Liu, Hong & Yang, Luoxiao & Zhang, Bingying & Zhang, Zijun, 2023. "A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data," Energy, Elsevier, vol. 283(C).
- Wang, Cong & He, Yan & Zhang, Hong-li & Ma, Ping, 2024. "Wind power forecasting based on manifold learning and a double-layer SWLSTM model," Energy, Elsevier, vol. 290(C).
- Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
- Jinhua Zhang & Hui Li & Peng Cheng & Jie Yan, 2024. "Interpretable Wind Power Short-Term Power Prediction Model Using Deep Graph Attention Network," Energies, MDPI, vol. 17(2), pages 1-16, January.
- Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
- Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
- Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
- Imran Shafi & Harris Khan & Muhammad Siddique Farooq & Isabel de la Torre Diez & Yini Miró & Juan Castanedo Galán & Imran Ashraf, 2023. "An Artificial Neural Network-Based Approach for Real-Time Hybrid Wind–Solar Resource Assessment and Power Estimation," Energies, MDPI, vol. 16(10), pages 1-18, May.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Liu, Guanjun & Wang, Yun & Qin, Hui & Shen, Keyan & Liu, Shuai & Shen, Qin & Qu, Yuhua & Zhou, Jianzhong, 2023. "Probabilistic spatiotemporal forecasting of wind speed based on multi-network deep ensembles method," Renewable Energy, Elsevier, vol. 209(C), pages 231-247.
- Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
- Zhou, Huanyu & Qiu, Yingning & Feng, Yanhui & Liu, Jing, 2022. "Power prediction of wind turbine in the wake using hybrid physical process and machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 568-586.
- Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
- Yin, Hao & Ou, Zuhong & Huang, Shengquan & Meng, Anbo, 2019. "A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition," Energy, Elsevier, vol. 189(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Liu, Hui & Duan, Zhu & Li, Yanfei & Lu, Haibo, 2018. "A novel ensemble model of different mother wavelets for wind speed multi-step forecasting," Applied Energy, Elsevier, vol. 228(C), pages 1783-1800.
- Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
- Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
- Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
- Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
- Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
- Wang, Yun & Hu, Qinghua & Meng, Deyu & Zhu, Pengfei, 2017. "Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model," Applied Energy, Elsevier, vol. 208(C), pages 1097-1112.
- Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
- Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
- Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Al-qaness, Mohammed A.A. & Ewees, Ahmed A. & Fan, Hong & Abualigah, Laith & Elaziz, Mohamed Abd, 2022. "Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting," Applied Energy, Elsevier, vol. 314(C).
- Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
- Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
- Wang, Han & Han, Shuang & Liu, Yongqian & Yan, Jie & Li, Li, 2019. "Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system," Applied Energy, Elsevier, vol. 237(C), pages 1-10.
- Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
More about this item
Keywords
Wind; Embedding; Spatio-temporal feature; Prediction; Convolutional networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:249-257. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.