IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v369y2024ics0306261924009723.html
   My bibliography  Save this article

A new decomposition-ensemble strategy fusion with correntropy optimization learning algorithms for short-term wind speed prediction

Author

Listed:
  • Zhao, Ning
  • Su, Yi
  • Dai, Xianxing
  • Jia, Shaomin
  • Wang, Xuewei

Abstract

Reliable short-term wind speed prediction is critical for ensuring the rational exploitation and utilization of wind energy. However, due to complex characteristics (e.g., nonstationarity, nonlinearity, uncertainty, etc.) of natural winds, the realization of this task usually confronts a great challenge. For this purpose, an innovative method for forecasting short-term wind speeds is developed based on the principle of “decomposition-prediction-ensemble”. Concretely, a new pretreatment technique, including boxplot figure based abnormal data diagnosis and correction, multivariate fast iterative filtering based time-frequency decomposition, and improved amplitude and frequency modulation based subseries reconstruction, is first developed to perform the high-quality data preprocessing. Then, three different algorithms in conjunction with the correntropy loss and consideration of model diversity are designed as high-performance predictors to capture more data characteristics. Further, a hybrid ensemble strategy combining stacking ensemble and hierarchical ensemble is developed to learn the potential interaction or nonlinear correlation among decomposed subseries as well as some uncertain information for high-reliability prediction. The eventual predictions are given in the form of deterministic point-value, interval, and real-time probability density function. Numerical examples based on four sets of multi-height wind speed data prove the effectiveness and superiority of the proposed method. For example, the average promotion obtained by this method compared with univariate conditional kernel density estimation in terms of mean absolute error is 33.87%, while the improvement in terms of coverage width criterion is 29.64%.

Suggested Citation

  • Zhao, Ning & Su, Yi & Dai, Xianxing & Jia, Shaomin & Wang, Xuewei, 2024. "A new decomposition-ensemble strategy fusion with correntropy optimization learning algorithms for short-term wind speed prediction," Applied Energy, Elsevier, vol. 369(C).
  • Handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009723
    DOI: 10.1016/j.apenergy.2024.123589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.