Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122034
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tian, Meng & Dong, Zhengcheng & Wang, Xianpei, 2021. "Reinforcement learning approach for robustness analysis of complex networks with incomplete information," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Li, Jiawen & Yu, Tao & Zhang, Xiaoshun & Li, Fusheng & Lin, Dan & Zhu, Hanxin, 2021. "Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system," Applied Energy, Elsevier, vol. 285(C).
- Hosseini, Ehsan & Aghadavoodi, Ehsan & Fernández Ramírez, Luis M., 2020. "Improving response of wind turbines by pitch angle controller based on gain-scheduled recurrent ANFIS type 2 with passive reinforcement learning," Renewable Energy, Elsevier, vol. 157(C), pages 897-910.
- Li, Jiawen & Yu, Tao & Yang, Bo, 2021. "A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
- Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Linfei & Li, Yu, 2022. "Hybrid multi-agent emotional deep Q network for generation control of multi-area integrated energy systems," Applied Energy, Elsevier, vol. 324(C).
- Li, Jiawen & Yu, Tao & Zhang, Xiaoshun, 2022. "Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
- Zhao, Yanwei & Wang, Huanqing & Xu, Ning & Zong, Guangdeng & Zhao, Xudong, 2023. "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
- Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
- Pengcheng Ni & Zhiyuan Ye & Can Cao & Zhimin Guo & Jian Zhao & Xing He, 2023. "Cooperative Game-Based Collaborative Optimal Regulation-Assisted Digital Twins for Wide-Area Distributed Energy," Energies, MDPI, vol. 16(6), pages 1-17, March.
- Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
- Li, Jiawen & Zhou, Tao, 2023. "Active fault-tolerant coordination energy management for a proton exchange membrane fuel cell using curriculum-based multiagent deep meta-reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Zhu, Dafeng & Yang, Bo & Liu, Yuxiang & Wang, Zhaojian & Ma, Kai & Guan, Xinping, 2022. "Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park," Applied Energy, Elsevier, vol. 311(C).
- Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).
- Lu, Xin & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "Seizing unconventional arbitrage opportunities in virtual power plants: A profitable and flexible recruitment approach," Applied Energy, Elsevier, vol. 358(C).
- Yin, Rongrong & Wang, Yumeng & Li, Linhui & Zhang, Le & Hao, Zhenyang & Lang, Chun, 2024. "A mobile node path optimization approach based on Q-learning to defend against cascading failures on static-mobile networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Tu, Haicheng & Gu, Fengqiang & Zhang, Xi & Xia, Yongxiang, 2023. "Robustness analysis of power system under sequential attacks with incomplete information," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Li, Jiawen, 2022. "A multi-objective energy coordinative and management policy for solid oxide fuel cell using triune brain large-scale multi-agent deep deterministic policy gradient," Applied Energy, Elsevier, vol. 324(C).
- Shen, Rendong & Zhong, Shengyuan & Wen, Xin & An, Qingsong & Zheng, Ruifan & Li, Yang & Zhao, Jun, 2022. "Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy," Applied Energy, Elsevier, vol. 312(C).
- Xie, Jingjie & Dong, Hongyang & Zhao, Xiaowei, 2023. "Data-driven torque and pitch control of wind turbines via reinforcement learning," Renewable Energy, Elsevier, vol. 215(C).
- Fan, Wei & Tan, Qingbo & Zhang, Amin & Ju, Liwei & Wang, Yuwei & Yin, Zhe & Li, Xudong, 2023. "A Bi-level optimization model of integrated energy system considering wind power uncertainty," Renewable Energy, Elsevier, vol. 202(C), pages 973-991.
- Marzban, Hamid Reza & Nezami, Atiyeh, 2022. "Analysis of nonlinear fractional optimal control systems described by delay Volterra–Fredholm integral equations via a new spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Li, Bin & Wang, Shuai & Li, Botong & Li, Hongbo & Wu, Jianzhong, 2023. "Optimal performance evaluation of thermal AGC units based on multi-dimensional feature analysis," Applied Energy, Elsevier, vol. 339(C).
More about this item
Keywords
Wind turbine; Security; Anomaly detection; Optimal resilient control; Reinforcement learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013983. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.