Scalable probabilistic estimates of electric vehicle charging given observed driver behavior
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118382
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shepero, Mahmoud & Munkhammar, Joakim, 2018. "Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data," Applied Energy, Elsevier, vol. 231(C), pages 1089-1099.
- Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
- Schill, Wolf-Peter & Gerbaulet, Clemens, 2015.
"Power system impacts of electric vehicles in Germany: Charging with coal or renewables?,"
Applied Energy, Elsevier, vol. 156(C), pages 185-196.
- Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
- Wolf-Peter Schill & Clemens Gerbaulet, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables?," Discussion Papers of DIW Berlin 1442, DIW Berlin, German Institute for Economic Research.
- Sodenkamp, Mariya & Wenig, Jürgen & Thiesse, Frédéric & Staake, Thorsten, 2019. "Who can drive electric? Segmentation of car drivers based on longitudinal GPS travel data," Energy Policy, Elsevier, vol. 130(C), pages 111-129.
- Xu, Min & Meng, Qiang & Liu, Kai & Yamamoto, Toshiyuki, 2017. "Joint charging mode and location choice model for battery electric vehicle users," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 68-86.
- Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
- Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
- Muratori, Matteo & Jadun, Paige & Bush, Brian & Bielen, David & Vimmerstedt, Laura & Gonder, Jeff & Gearhart, Chris & Arent, Doug, 2020. "Future integrated mobility-energy systems: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
- Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
- Kapustin, Nikita O. & Grushevenko, Dmitry A., 2020. "Long-term electric vehicles outlook and their potential impact on electric grid," Energy Policy, Elsevier, vol. 137(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
- Powell, Siobhan & Martin, Sonia & Rajagopal, Ram & Azevedo, Inês M.L. & de Chalendar, Jacques, 2024. "Future-proof rates for controlled electric vehicle charging: Comparing multi-year impacts of different emission factor signals," Energy Policy, Elsevier, vol. 190(C).
- Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Leonardo Nogueira Fontoura da Silva & Nelson Knak Neto & Jordan Passinato Sausen & Carlos Henrique Barriquello & Alzenira da Rosa Abaide, 2024. "User Behavior in Fast Charging of Electric Vehicles: An Analysis of Parameters and Clustering," Energies, MDPI, vol. 17(19), pages 1-20, September.
- Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
- Powell, Siobhan & Vianna Cezar, Gustavo & Apostolaki-Iosifidou, Elpiniki & Rajagopal, Ram, 2022. "Large-scale scenarios of electric vehicle charging with a data-driven model of control," Energy, Elsevier, vol. 248(C).
- Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
- Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
- Wu, Ji & Su, Hao & Meng, Jinhao & Lin, Mingqiang, 2023. "Electric vehicle charging scheduling considering infrastructure constraints," Energy, Elsevier, vol. 278(PA).
- Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
- Huang, Pei & Ma, Zhenliang, 2024. "Unveiling electric vehicle (EV) charging patterns and their transformative role in electricity balancing and delivery: Insights from real-world data in Sweden," Renewable Energy, Elsevier, vol. 236(C).
- Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
- Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
- Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
- Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
- Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
- Milan Straka & Rui Carvalho & Gijs van der Poel & v{L}ubov{s} Buzna, 2020. "Explaining the distribution of energy consumption at slow charging infrastructure for electric vehicles from socio-economic data," Papers 2006.01672, arXiv.org, revised Jun 2020.
- Loris Di Natale & Luca Funk & Martin Rüdisüli & Bratislav Svetozarevic & Giacomo Pareschi & Philipp Heer & Giovanni Sansavini, 2021. "The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland," Energies, MDPI, vol. 14(16), pages 1-24, August.
- Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
- Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
- Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Wang, An & Xu, Junshi & Zhang, Mingqian & Zhai, Zhiqiang & Song, Guohua & Hatzopoulou, Marianne, 2022. "Emissions and fuel consumption of a hybrid electric vehicle in real-world metropolitan traffic conditions," Applied Energy, Elsevier, vol. 306(PB).
- Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
- Ouyang, Xu & Xu, Min, 2022. "Promoting green transportation under the belt and Road Initiative: Locating charging stations considering electric vehicle users’ travel behavior," Transport Policy, Elsevier, vol. 116(C), pages 58-80.
- Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
- Jenn, Alan, 2023. "Emissions of electric vehicles in California’s transition to carbon neutrality," Applied Energy, Elsevier, vol. 339(C).
- Ruisheng Wang & Zhong Chen & Qiang Xing & Ziqi Zhang & Tian Zhang, 2022. "A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
- Steinbach, Sarah A. & Blaschke, Maximilian J., 2024. "Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?," Applied Energy, Elsevier, vol. 375(C).
- Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
- Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
- Sarah A. Steinbach & Maximilian J. Blaschke, 2024. "How grid reinforcement costs differ by the income of electric vehicle users," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
More about this item
Keywords
Electric vehicle; Charging behavior; Graphical model; Clustering; Long-term planning; Large-scale;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016214. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.