The Application of Improved Random Forest Algorithm on the Prediction of Electric Vehicle Charging Load
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Qinglai Guo & Yao Wang & Hongbin Sun & Zhengshuo Li & Shujun Xin & Boming Zhang, 2012. "Factor Analysis of the Aggregated Electric Vehicle Load Based on Data Mining," Energies, MDPI, vol. 5(6), pages 1-18, June.
- Muhammad Aziz & Takuya Oda & Takashi Mitani & Yoko Watanabe & Takao Kashiwagi, 2015. "Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting," Energies, MDPI, vol. 8(5), pages 1-19, April.
- Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
- Zhang, Wenjie & Quan, Hao & Srinivasan, Dipti, 2018. "Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination," Energy, Elsevier, vol. 160(C), pages 810-819.
- Che, JinXing & Wang, JianZhou, 2014. "Short-term load forecasting using a kernel-based support vector regression combination model," Applied Energy, Elsevier, vol. 132(C), pages 602-609.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Genov, Evgenii & Cauwer, Cedric De & Kriekinge, Gilles Van & Coosemans, Thierry & Messagie, Maarten, 2024. "Forecasting flexibility of charging of electric vehicles: Tree and cluster-based methods," Applied Energy, Elsevier, vol. 353(PA).
- Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
- Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
- Zhou, Kaile & Hu, Dingding & Li, Fangyi, 2022. "Impact of COVID-19 on private driving behavior: Evidence from electric vehicle charging data," Transport Policy, Elsevier, vol. 125(C), pages 164-178.
- Vinay Simha Reddy Tappeta & Bhargav Appasani & Suprava Patnaik & Taha Selim Ustun, 2022. "A Review on Emerging Communication and Computational Technologies for Increased Use of Plug-In Electric Vehicles," Energies, MDPI, vol. 15(18), pages 1-26, September.
- Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.
- Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
- Juncheng Zhu & Zhile Yang & Monjur Mourshed & Yuanjun Guo & Yimin Zhou & Yan Chang & Yanjie Wei & Shengzhong Feng, 2019. "Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches," Energies, MDPI, vol. 12(14), pages 1-19, July.
- Yunsun Kim & Sahm Kim, 2021. "Forecasting Charging Demand of Electric Vehicles Using Time-Series Models," Energies, MDPI, vol. 14(5), pages 1-16, March.
- Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
- Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
- Changzhi Li & Dandan Liu & Mao Wang & Hanlin Wang & Shuai Xu, 2023. "Detection of Outliers in Time Series Power Data Based on Prediction Errors," Energies, MDPI, vol. 16(2), pages 1-19, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
- Aziz, Muhammad & Oda, Takuya & Ito, Masakazu, 2016. "Battery-assisted charging system for simultaneous charging of electric vehicles," Energy, Elsevier, vol. 100(C), pages 82-90.
- Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
- Uniejewski, Bartosz & Weron, Rafał, 2021.
"Regularized quantile regression averaging for probabilistic electricity price forecasting,"
Energy Economics, Elsevier, vol. 95(C).
- Bartosz Uniejewski & Rafal Weron, 2019. "Regularized Quantile Regression Averaging for probabilistic electricity price forecasting," HSC Research Reports HSC/19/04, Hugo Steinhaus Center, Wroclaw University of Technology.
- Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Hendrik C. Ferreira & A. J. Han Vinck, 2017. "Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
- Lixing Chen & Zhong Chen & Xueliang Huang & Long Jin, 2016. "A Study on Price-Based Charging Strategy for Electric Vehicles on Expressways," Energies, MDPI, vol. 9(5), pages 1-18, May.
- Zhenya Ji & Xueliang Huang & Changfu Xu & Houtao Sun, 2016. "Accelerated Model Predictive Control for Electric Vehicle Integrated Microgrid Energy Management: A Hybrid Robust and Stochastic Approach," Energies, MDPI, vol. 9(11), pages 1-18, November.
- Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
- Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
- Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
- Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.
- Alessandro Ciocia & Angela Amato & Paolo Di Leo & Stefania Fichera & Gabriele Malgaroli & Filippo Spertino & Slavka Tzanova, 2021. "Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation," Energies, MDPI, vol. 14(6), pages 1-24, March.
- Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
- Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
- Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
- Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
- He, Yaoyao & Xu, Qifa & Wan, Jinhong & Yang, Shanlin, 2016. "Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function," Energy, Elsevier, vol. 114(C), pages 498-512.
- Jun Bi & Yongxing Wang & Shuai Sun & Wei Guan, 2018. "Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing," Energies, MDPI, vol. 11(5), pages 1-18, April.
- Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
- Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
More about this item
Keywords
electric vehicle (EV); random forest; charging load; data analysis; load forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3207-:d:183837. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.