IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1396-d221850.html
   My bibliography  Save this article

Neural Network-Based Modeling of Electric Vehicle Energy Demand and All Electric Range

Author

Listed:
  • Jakov Topić

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia)

  • Branimir Škugor

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia)

  • Joško Deur

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

A deep neural network-based approach of energy demand modeling of electric vehicles (EV) is proposed in this paper. The model-based prediction of energy demand is based on driving cycle time series used as a model input, which is properly preprocessed and transformed into 1D or 2D static maps to serve as a static input to the neural network. Several deep feedforward neural network architectures are considered for this application along with different model input formats. Two energy demand models are derived, where the first one predicts the battery state-of-charge and fuel consumption at destination for an extended range electric vehicle, and the second one predicts the vehicle all-electric range. The models are validated based on a separate test dataset when compared to the one used in neural network training, and they are compared with the traditional response surface approach to illustrate effectiveness of the method proposed.

Suggested Citation

  • Jakov Topić & Branimir Škugor & Joško Deur, 2019. "Neural Network-Based Modeling of Electric Vehicle Energy Demand and All Electric Range," Energies, MDPI, vol. 12(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1396-:d:221850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cedric De Cauwer & Wouter Verbeke & Thierry Coosemans & Saphir Faid & Joeri Van Mierlo, 2017. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions," Energies, MDPI, vol. 10(5), pages 1-18, May.
    2. He, Hongwen & Yan, Mei & Sun, Chao & Peng, Jiankun & Li, Menglin & Jia, Hui, 2018. "Predictive air-conditioner control for electric buses with passenger amount variation forecast☆," Applied Energy, Elsevier, vol. 227(C), pages 249-261.
    3. Geem, Zong Woo, 2011. "Transport energy demand modeling of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 39(8), pages 4644-4650, August.
    4. Branimir Škugor & Joško Deur, 2016. "Delivery vehicle fleet data collection, analysis and naturalistic driving cycles synthesis," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 10(1), pages 19-39.
    5. Massimo Delogu & Francesco Del Pero & Marco Pierini, 2016. "Lightweight Design Solutions in the Automotive Field: Environmental Modelling Based on Fuel Reduction Value Applied to Diesel Turbocharged Vehicles," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    6. Zeng, Tao & Zhang, Caizhi & Hu, Minghui & Chen, Yan & Yuan, Changrong & Chen, Jingrui & Zhou, Anjian, 2018. "Modelling and predicting energy consumption of a range extender fuel cell hybrid vehicle," Energy, Elsevier, vol. 165(PB), pages 187-197.
    7. Murat, Yetis Sazi & Ceylan, Halim, 2006. "Use of artificial neural networks for transport energy demand modeling," Energy Policy, Elsevier, vol. 34(17), pages 3165-3172, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valery Vodovozov & Andrei Aksjonov & Eduard Petlenkov & Zoja Raud, 2021. "Neural Network-Based Model Reference Control of Braking Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-22, April.
    2. Shimi Sudha Letha & Math H. J. Bollen & Tatiano Busatto & Angela Espin Delgado & Enock Mulenga & Hamed Bakhtiari & Jil Sutaria & Kazi Main Uddin Ahmed & Naser Nakhodchi & Selçuk Sakar & Vineetha Ravin, 2023. "Power Quality Issues of Electro-Mobility on Distribution Network—An Overview," Energies, MDPI, vol. 16(13), pages 1-21, June.
    3. Zeng, Tao & Zhang, Caizhi & Zhou, Anjian & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Chen, Jinrui & Foley, Aoife M., 2021. "Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control," Energy, Elsevier, vol. 230(C).
    4. Jakov Topić & Branimir Škugor & Joško Deur, 2021. "Synthesis and Feature Selection-Supported Validation of Multidimensional Driving Cycles," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    5. Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2021. "Review on Braking Energy Management in Electric Vehicles," Energies, MDPI, vol. 14(15), pages 1-26, July.
    6. Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
    7. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    8. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    9. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    10. Raymond Kene & Thomas Olwal & Barend J. van Wyk, 2021. "Sustainable Electric Vehicle Transportation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    2. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    3. Kialashaki, Arash & Reisel, John R., 2013. "Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks," Applied Energy, Elsevier, vol. 108(C), pages 271-280.
    4. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    5. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    6. Adom, Philip Kofi & Amakye, Kwaku & Barnor, Charles & Quartey, George & Bekoe, William, 2016. "Shift in demand elasticities, road energy forecast and the persistence profile of shocks," Economic Modelling, Elsevier, vol. 55(C), pages 189-206.
    7. Li, Zheng & Zhou, Bo & Hensher, David A., 2022. "Forecasting automobile gasoline demand in Australia using machine learning-based regression," Energy, Elsevier, vol. 239(PD).
    8. Hoxha, Julian & Çodur, Muhammed Yasin & Mustafaraj, Enea & Kanj, Hassan & El Masri, Ali, 2023. "Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis," Applied Energy, Elsevier, vol. 350(C).
    9. Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    10. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    11. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    12. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    13. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    14. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    15. Alexander Wahl & Christoph Wellmann & Björn Krautwig & Patrick Manns & Bicheng Chen & Christof Schernus & Jakob Andert, 2022. "Efficiency Increase through Model Predictive Thermal Control of Electric Vehicle Powertrains," Energies, MDPI, vol. 15(4), pages 1-21, February.
    16. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    17. Satrio Mukti Wibowo & Dedi Budiman Hakim & Baba Barus & Akhmad Fauzi, 2022. "Estimation of Energy Demand in Indonesia using Artificial Neural Network," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 261-271, November.
    18. Buratti, C. & Barbanera, M. & Palladino, D., 2014. "An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks," Applied Energy, Elsevier, vol. 120(C), pages 125-132.
    19. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Dawei Li & Cheng Li & Tomio Miwa & Takayuki Morikawa, 2019. "An Exploration of Factors Affecting Drivers’ Daily Fuel Consumption Efficiencies Considering Multi-Level Random Effects," Sustainability, MDPI, vol. 11(2), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1396-:d:221850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.