IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics030626192400758x.html
   My bibliography  Save this article

A hybrid physics-based and data-driven model for intra-day and day-ahead wind power forecasting considering a drastically expanded predictor search space

Author

Listed:
  • Kirchner-Bossi, Nicolas
  • Kathari, Gabriel
  • Porté-Agel, Fernando

Abstract

This work presents a novel hybrid (physics- and data-driven) model for short-term (intra-day and day-ahead, 3h-24h) wind power forecasting (STWPF). Traditionally, STWPF predictors admitted very few meteorological variables only from the grid points closest to the turbines. Here, with the aim to further capture the underlying atmospheric processes ruling the wind variability in the wind farm, the approach relies on drastically expanding the predictor space, composed of numerous meteorological variables throughout a large geographical domain, retrieved from a weather forecasting model (COSMO-1). An ad-hoc genetic algorithm that optimizes the selection of predictors is designed and combined with feed-forward artificial neural networks for its cost function evaluation. The introduced model is compared to multiple benchmark models in a 16-turbine wind farm in the Swiss Jura mountains. For +12h and +24h lead times, the new approach shows a root-mean squared error normalized to the installed wind farm capacity of 11% and 11.6%, respectively. These values entail ∼16% higher forecasting skill compared to state-of-the-art predictor frameworks. Results highlight the ability of the presented approach to systematically select as predictors different variables with a well-known impact on the wind farm performance, such as the turbulent kinetic energy or the vertical wind shear. Clustering the data according to the wind direction provides substantial benefit. In addition, it provides a better understanding of the attained improvement: largest performances occur in those wind directions affected by highly complex terrain. This indicates that the proposed model can be especially suitable for wind farms in complex terrain.

Suggested Citation

  • Kirchner-Bossi, Nicolas & Kathari, Gabriel & Porté-Agel, Fernando, 2024. "A hybrid physics-based and data-driven model for intra-day and day-ahead wind power forecasting considering a drastically expanded predictor search space," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s030626192400758x
    DOI: 10.1016/j.apenergy.2024.123375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400758X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s030626192400758x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.