IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923000818.html
   My bibliography  Save this article

Microgrid system energy management with demand response program for clean and economical operation

Author

Listed:
  • Dey, Bishwajit
  • Misra, Srikant
  • Garcia Marquez, Fausto Pedro

Abstract

A fundamental microgrid system's load demand often fluctuates hourly. Utilities establish different prices at various times based on the fluctuation of the load demand curve, this is referred to as electricity price based on time-of-use (TOU). The overall contribution of the paper is manifold which involves the techno-economic impacts of grid participation, electricity pricing and renewables. However, the primary goal is to offer a demand-response (DR) model that maximizes the benefits of energy retailers, in this case the microgrid customers. DR models examine the utility and elasticity of various customers, taking into account their different behaviors during both peak and valley periods. Considering that 40 % of the customers participate in the DR program, an exhaustive optimization process is initiated to calculate the optimal incentive value. Thereafter, a novel intelligent algorithm is implemented to minimize the overall cost of a microgrid system and analyze the outcome with and without DR program. The many cost factors taken into account include fuel costs, fined pollution costs, operating and maintenance costs, depreciation costs, etc. The use of a DR-based energy management microgrid system resulted in a significant decrease in overall generating costs from 880¥ to 872¥ along with pollutants released as compared to those described in the literature, according to numerical data. Furthermore, the peak demand was lowered by 5.13 % from 180 kW to 170.754 kW. The suggested optimization method is claimed to be superior by measures of central tendency analysis.

Suggested Citation

  • Dey, Bishwajit & Misra, Srikant & Garcia Marquez, Fausto Pedro, 2023. "Microgrid system energy management with demand response program for clean and economical operation," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000818
    DOI: 10.1016/j.apenergy.2023.120717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    2. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    3. Zeynali, Saeed & Nasiri, Nima & Marzband, Mousa & Ravadanegh, Sajad Najafi, 2021. "A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets," Applied Energy, Elsevier, vol. 300(C).
    4. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
    5. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    6. Qiao, Baihao & Liu, Jing, 2020. "Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm," Renewable Energy, Elsevier, vol. 154(C), pages 316-336.
    7. Shanhe Jiang & Chaolong Zhang & Wenjin Wu & Shijun Chen, 2019. "Combined Economic and Emission Dispatch Problem of Wind-Thermal Power System Using Gravitational Particle Swarm Optimization Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-19, November.
    8. Nasiri, Nima & Zeynali, Saeed & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2021. "A hybrid robust-stochastic approach for strategic scheduling of a multi-energy system as a price-maker player in day-ahead wholesale market," Energy, Elsevier, vol. 235(C).
    9. Makbul A.M. Ramli & H.R.E.H. Bouchekara & Abdulsalam S. Alghamdi, 2019. "Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources," Sustainability, MDPI, vol. 11(14), pages 1-28, July.
    10. Amiri, M. & Khanmohammadi, S. & Badamchizadeh, M.A., 2018. "Floating search space: A new idea for efficient solving the Economic and emission dispatch problem," Energy, Elsevier, vol. 158(C), pages 564-579.
    11. Sun, Shitong & Kazemi-Razi, S. Mahdi & Kaigutha, Lisa G. & Marzband, Mousa & Nafisi, Hamed & Al-Sumaiti, Ameena Saad, 2022. "Day-ahead offering strategy in the market for concentrating solar power considering thermoelectric decoupling by a compressed air energy storage," Applied Energy, Elsevier, vol. 305(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohana Alanazi & Abdulaziz Alanazi & Zulfiqar Ali Memon & Ahmed Bilal Awan & Mohamed Deriche, 2024. "Multi-Objective Energy Management in Microgrids: Improved Honey Badger Algorithm with Fuzzy Decision-Making and Battery Aging Considerations," Energies, MDPI, vol. 17(17), pages 1-31, September.
    2. Asjad Ali & Abdullah Aftab & Muhammad Nadeem Akram & Shoaib Awan & Hafiz Abdul Muqeet & Zeeshan Ahmad Arfeen, 2024. "Residential Prosumer Energy Management System with Renewable Integration Considering Multi-Energy Storage and Demand Response," Sustainability, MDPI, vol. 16(5), pages 1-27, March.
    3. Ahmed T. Hachemi & Fares Sadaoui & Abdelhakim Saim & Mohamed Ebeed & Hossam E. A. Abbou & Salem Arif, 2023. "Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response," Sustainability, MDPI, vol. 15(24), pages 1-34, December.
    4. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    5. Mousa Mohammed Khubrani & Shadab Alam, 2023. "Blockchain-Based Microgrid for Safe and Reliable Power Generation and Distribution: A Case Study of Saudi Arabia," Energies, MDPI, vol. 16(16), pages 1-34, August.
    6. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    7. Nihuan Liao & Zhihong Hu & Vedran Mrzljak & Saber Arabi Nowdeh, 2024. "Stochastic Techno-Economic Optimization of Hybrid Energy System with Photovoltaic, Wind, and Hydrokinetic Resources Integrated with Electric and Thermal Storage Using Improved Fire Hawk Optimization," Sustainability, MDPI, vol. 16(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bishwajit Dey & Saurav Raj & Rohit Babu & Tapas Chhualsingh, 2023. "An approach to attain a balanced trade-off solution for dynamic economic emission dispatch problem on a microgrid system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1300-1311, August.
    2. Sun, Yunpeng & Razzaq, Asif & Sun, Huaping & Irfan, Muhammad, 2022. "The asymmetric influence of renewable energy and green innovation on carbon neutrality in China: Analysis from non-linear ARDL model," Renewable Energy, Elsevier, vol. 193(C), pages 334-343.
    3. Khalili, Reza & Khaledi, Arian & Marzband, Mousa & Nematollahi, Amin Foroughi & Vahidi, Behrooz & Siano, Pierluigi, 2023. "Robust multi-objective optimization for the Iranian electricity market considering green hydrogen and analyzing the performance of different demand response programs," Applied Energy, Elsevier, vol. 334(C).
    4. Bishwajit Dey & Soham Dutta & Fausto Pedro Garcia Marquez, 2023. "Intelligent Demand Side Management for Exhaustive Techno-Economic Analysis of Microgrid System," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    5. Zeynali, Saeed & Nasiri, Nima & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2022. "A three-level framework for strategic participation of aggregated electric vehicle-owning households in local electricity and thermal energy markets," Applied Energy, Elsevier, vol. 324(C).
    6. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    7. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    8. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Bishwajit Dey & Fausto Pedro García Márquez & Sourav Kr. Basak, 2020. "Smart Energy Management of Residential Microgrid System by a Novel Hybrid MGWOSCACSA Algorithm," Energies, MDPI, vol. 13(13), pages 1-23, July.
    10. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    11. Sourav Basak & Bishwajit Dey & Biplab Bhattacharyya, 2023. "Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4723-4763, May.
    12. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    13. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    14. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
    15. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    16. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    17. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    18. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    19. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    20. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.