IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222017790.html
   My bibliography  Save this article

A knee-guided algorithm to solve multi-objective economic emission dispatch problem

Author

Listed:
  • Yu, Xiaobing
  • Duan, Yuchen
  • Luo, Wenguan

Abstract

Environmental protection and climate change have addressed tremendous pressure on thermal plants. So, the Economic Emission Dispatch (EED) problem has to consider bi-objective: the fuel cost and emission dispatch, which can be solved by the conventional Multi-Objective Evolutionary Algorithms (MOEAs). However, these MOEAs often provide well-distributed Pareto Optimal Front (POF), which may be a burden to thermal plants policymakers to select an optimal solution from a lot of candidate solutions. We develop a Knee-Guided Algorithm (KGA) to handle the EED problem, in which the knee solution is defined as the optimal by using the minimum Manhattan distance approach. The proposed KGA searches around the knee solution to boost the convergence and outputs the knee solution instead of the whole POF, which is convenient to thermal plant policymakers. Through four test cases, including six-unit, ten-unit, eleven-unit, and fourteen-unit, the proposed KGA is compared with some latest algorithms. The results have demonstrated that the KGA is superior.

Suggested Citation

  • Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222017790
    DOI: 10.1016/j.energy.2022.124876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    2. Jayabarathi, T. & Raghunathan, T. & Adarsh, B.R. & Suganthan, Ponnuthurai Nagaratnam, 2016. "Economic dispatch using hybrid grey wolf optimizer," Energy, Elsevier, vol. 111(C), pages 630-641.
    3. Chen, Min-Rong & Zeng, Guo-Qiang & Lu, Kang-Di, 2019. "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, Elsevier, vol. 143(C), pages 277-294.
    4. Xiaobing Yu & YiQun Lu & Xianrui Yu, 2018. "Evaluating Multiobjective Evolutionary Algorithms Using MCDM Methods," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-13, March.
    5. Jebaraj, Luke & Venkatesan, Chakkaravarthy & Soubache, Irisappane & Rajan, Charles Christober Asir, 2017. "Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1206-1220.
    6. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    7. Shahbaz Hussain & Mohammed Al-Hitmi & Salman Khaliq & Asif Hussain & Muhammad Asghar Saqib, 2019. "Implementation and Comparison of Particle Swarm Optimization and Genetic Algorithm Techniques in Combined Economic Emission Dispatch of an Independent Power Plant," Energies, MDPI, vol. 12(11), pages 1-15, May.
    8. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    9. Mahdi, Fahad Parvez & Vasant, Pandian & Kallimani, Vish & Watada, Junzo & Fai, Patrick Yeoh Siew & Abdullah-Al-Wadud, M., 2018. "A holistic review on optimization strategies for combined economic emission dispatch problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3006-3020.
    10. Gherbi, Yamina Ahlem & Bouzeboudja, Hamid & Gherbi, Fatima Zohra, 2016. "The combined economic environmental dispatch using new hybrid metaheuristic," Energy, Elsevier, vol. 115(P1), pages 468-477.
    11. Ma, Haiping & Yang, Zhile & You, Pengcheng & Fei, Minrui, 2017. "Multi-objective biogeography-based optimization for dynamic economic emission load dispatch considering plug-in electric vehicles charging," Energy, Elsevier, vol. 135(C), pages 101-111.
    12. Amiri, M. & Khanmohammadi, S. & Badamchizadeh, M.A., 2018. "Floating search space: A new idea for efficient solving the Economic and emission dispatch problem," Energy, Elsevier, vol. 158(C), pages 564-579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    2. Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    2. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    3. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Lai, Wenhao & Song, Qi & Zheng, Xiaoliang & Tao, Qiong & Chen, Hualiang, 2023. "A new version of membrane search algorithm for hybrid renewable energy systems dynamic scheduling," Renewable Energy, Elsevier, vol. 209(C), pages 262-276.
    5. Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).
    6. Karar Mahmoud & Mohamed Abdel-Nasser & Eman Mustafa & Ziad M. Ali, 2020. "Improved Salp–Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systems," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    7. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    8. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    9. Qiao, Baihao & Liu, Jing, 2020. "Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm," Renewable Energy, Elsevier, vol. 154(C), pages 316-336.
    10. Dey, Bishwajit & Misra, Srikant & Garcia Marquez, Fausto Pedro, 2023. "Microgrid system energy management with demand response program for clean and economical operation," Applied Energy, Elsevier, vol. 334(C).
    11. Jingliang Jin & Qinglan Wen & Xianyue Zhang & Siqi Cheng & Xiaojun Guo, 2021. "Economic Emission Dispatch for Wind Power Integrated System with Carbon Trading Mechanism," Energies, MDPI, vol. 14(7), pages 1-17, March.
    12. Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
    13. Raheela Jamal & Baohui Men & Noor Habib Khan & Muhammad Asif Zahoor Raja, 2019. "Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind," Energies, MDPI, vol. 12(13), pages 1-23, July.
    14. Lai, Wenhao & Zheng, Xiaoliang & Song, Qi & Hu, Feng & Tao, Qiong & Chen, Hualiang, 2022. "Multi-objective membrane search algorithm: A new solution for economic emission dispatch," Applied Energy, Elsevier, vol. 326(C).
    15. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    16. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    18. Wang, Guibin & Zha, Yongxing & Wu, Ting & Qiu, Jing & Peng, Jian-chun & Xu, Gang, 2020. "Cross entropy optimization based on decomposition for multi-objective economic emission dispatch considering renewable energy generation uncertainties," Energy, Elsevier, vol. 193(C).
    19. Sourav Basak & Bishwajit Dey & Biplab Bhattacharyya, 2023. "Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4723-4763, May.
    20. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222017790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.