IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924022360.html
   My bibliography  Save this article

Microgrid energy management system with degradation cost and carbon trading mechanism: A multi-objective artificial hummingbird algorithm

Author

Listed:
  • Li, Ling-Ling
  • Ji, Bing-Xiang
  • Li, Zhong-Tao
  • Lim, Ming K.
  • Sethanan, Kanchana
  • Tseng, Ming-Lang

Abstract

Microgrid is an important way to optimize the distributed power generation and its optimal scheduling to ensure reliable and economical operation. This study constructs a multi-objective optimization model for a microgrid energy management system involving degradation cost and carbon trading mechanism. A carbon trading mechanism is to reduce greenhouse gas emissions; meanwhile, a demand response strategy is employed to optimize energy load demand. The energy storage system mathematical model is considered and degradation cost is introduced to change the corresponding control strategy. A hybrid energy storage is used in this model to smooth out the solar power and wind power fluctuations. Hence, a multi-objective artificial hummingbird optimization algorithm is proposed and uses to solve the optimal operation strategy of the microgrid. The final optimal operation strategy is obtained from the Pareto solution set using TOPSIS. The results show that the proposed microgrid system has 20.2 % lower total operating costs, 4.5 % lower carbon emissions, and 32.6 % longer battery life than the conventional microgrid system, which is critical for improving the operation stability, economy, low carbon of the system, and extending the service life of the battery.

Suggested Citation

  • Li, Ling-Ling & Ji, Bing-Xiang & Li, Zhong-Tao & Lim, Ming K. & Sethanan, Kanchana & Tseng, Ming-Lang, 2025. "Microgrid energy management system with degradation cost and carbon trading mechanism: A multi-objective artificial hummingbird algorithm," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022360
    DOI: 10.1016/j.apenergy.2024.124853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.