IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3500-d381239.html
   My bibliography  Save this article

Smart Energy Management of Residential Microgrid System by a Novel Hybrid MGWOSCACSA Algorithm

Author

Listed:
  • Bishwajit Dey

    (Department of Electrical Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India)

  • Fausto Pedro García Márquez

    (Ingneium Research Group, Universidad Castilla-La Mancha, 13071 Ciudad Real, Spain)

  • Sourav Kr. Basak

    (Department of Electrical Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India)

Abstract

Optimal scheduling of distributed energy resources (DERs) of a low-voltage utility-connected microgrid system is studied in this paper. DERs include both dispatchable fossil-fueled generators and non-dispatchable renewable energy resources. Various real constraints associated with adjustable loads, charging/discharging limitations of battery, and the start-up/shut-down time of the dispatchable DERs are considered during the scheduling process. Adjustable loads are assumed to the residential loads which either operates throughout the day or for a particular period during the day. The impact of these loads on the generation cost of the microgrid system is studied. A novel hybrid approach considers the grey wolf optimizer (GWO), sine cosine algorithm (SCA), and crow search algorithm (CSA) to minimize the overall generation cost of the microgrid system. It has been found that the generation costs rise 50% when the residential loads were included along with the fixed loads. Active participation of the utility incurred 9–17% savings in the system generation cost compared to the cases when the microgrid was operating in islanded mode. Finally, statistical analysis has been employed to validate the proposed hybrid Modified Grey Wolf Optimization-Sine Cosine Algorithm-Crow Search Algorithm (MGWOSCACSA) over other algorithms used.

Suggested Citation

  • Bishwajit Dey & Fausto Pedro García Márquez & Sourav Kr. Basak, 2020. "Smart Energy Management of Residential Microgrid System by a Novel Hybrid MGWOSCACSA Algorithm," Energies, MDPI, vol. 13(13), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3500-:d:381239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohseni, Amin & Mortazavi, Seyed Saeidollah & Ghasemi, Ahmad & Nahavandi, Ali & Talaei abdi, Masoud, 2017. "The application of household appliances' flexibility by set of sequential uninterruptible energy phases model in the day-ahead planning of a residential microgrid," Energy, Elsevier, vol. 139(C), pages 315-328.
    2. Sharma, Sharmistha & Bhattacharjee, Subhadeep & Bhattacharya, Aniruddha, 2018. "Probabilistic operation cost minimization of Micro-Grid," Energy, Elsevier, vol. 148(C), pages 1116-1139.
    3. Makbul A.M. Ramli & H.R.E.H. Bouchekara & Abdulsalam S. Alghamdi, 2019. "Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources," Sustainability, MDPI, vol. 11(14), pages 1-28, July.
    4. Bishwajit Dey & Biplab Bhattacharyya & Sharmistha Sharma, 2019. "Robust Economic Dispatch of Microgrid With Highly Penetrated Renewables and Energy Storage System," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 8(1), pages 67-87, January.
    5. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    6. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    7. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Sievers & Thomas Blank, 2023. "A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Swarupa Pinninti & Srinivasa Rao Sura, 2023. "Renewables based dynamic cost-effective optimal scheduling of distributed generators using teaching–learning-based optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-373, March.
    3. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    4. Yuan, Zhi & Li, Ji, 2024. "Photovoltaic-penetrated power distribution networks’ resiliency-oriented day-ahead scheduling equipped with power-to-hydrogen systems: A risk-driven decision framework," Energy, Elsevier, vol. 299(C).
    5. Sourav Basak & Bishwajit Dey & Biplab Bhattacharyya, 2023. "Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4723-4763, May.
    6. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    7. Sourav Basak & Biplab Bhattacharyya & Bishwajit Dey, 2022. "Combined economic emission dispatch on dynamic systems using hybrid CSA-JAYA Algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2269-2290, October.
    8. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    9. Maria Carmela Di Piazza, 2022. "Recent Developments and Trends in Energy Management Systems for Microgrids," Energies, MDPI, vol. 15(21), pages 1-6, November.
    10. Shahbazbegian, Vahid & Shafie-khah, Miadreza & Laaksonen, Hannu & Strbac, Goran & Ameli, Hossein, 2023. "Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bishwajit Dey & Soham Dutta & Fausto Pedro Garcia Marquez, 2023. "Intelligent Demand Side Management for Exhaustive Techno-Economic Analysis of Microgrid System," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    2. Dey, Bishwajit & Misra, Srikant & Garcia Marquez, Fausto Pedro, 2023. "Microgrid system energy management with demand response program for clean and economical operation," Applied Energy, Elsevier, vol. 334(C).
    3. Bishwajit Dey & Saurav Raj & Rohit Babu & Tapas Chhualsingh, 2023. "An approach to attain a balanced trade-off solution for dynamic economic emission dispatch problem on a microgrid system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1300-1311, August.
    4. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    5. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    7. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    8. Navid Shirzadi & Hadise Rasoulian & Fuzhan Nasiri & Ursula Eicker, 2022. "Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators," Energies, MDPI, vol. 15(20), pages 1-15, October.
    9. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    10. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    11. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    12. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    13. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    14. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    15. Vinay Kumar Jadoun & Nipun Sharma & Piyush Jha & Jayalakshmi N. S. & Hasmat Malik & Fausto Pedro Garcia Márquez, 2021. "Optimal Scheduling of Dynamic Pricing Based V2G and G2V Operation in Microgrid Using Improved Elephant Herding Optimization," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    16. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    17. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    18. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    19. Md Jamal Ahmed Shohan & Md Omar Faruque & Simon Y. Foo, 2022. "Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
    20. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3500-:d:381239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.