IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4373-d1469017.html
   My bibliography  Save this article

Multi-Objective Energy Management in Microgrids: Improved Honey Badger Algorithm with Fuzzy Decision-Making and Battery Aging Considerations

Author

Listed:
  • Mohana Alanazi

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Abdulaziz Alanazi

    (Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 73222, Saudi Arabia)

  • Zulfiqar Ali Memon

    (Department of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman 346, United Arab Emirates)

  • Ahmed Bilal Awan

    (Department of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman 346, United Arab Emirates)

  • Mohamed Deriche

    (Artificial Intelligence Research Centre, College of Engineering and Information Technology, Ajman University, Ajman 346, United Arab Emirates)

Abstract

A multi-objective energy management and scheduling strategy for a microgrid comprising wind turbines, solar cells, fuel cells, microturbines, batteries, and loads is proposed in this work. The plan uses a fuzzy decision-making technique to reduce pollution emissions, battery storage aging costs, and operating expenses. To be more precise, we applied an improved honey badger algorithm (IHBA) to find the best choice variables, such as the size of energy resources and storage, by combining fuzzy decision-making with the Pareto solution set and a chaotic sequence. We used the IHBA to perform single- and multi-objective optimization simulations for the microgrid’s energy management, and we compared the results with those of the conventional HBA and particle swarm optimization (PSO). The results showed that the multi-objective method improved both goals by resulting in a compromise between them. On the other hand, the single-objective strategy makes one goal stronger and the other weaker. Apart from that, the IHBA performed better than the conventional HBA and PSO, which also lowers the cost. The suggested approach beat the alternative tactics in terms of savings and effectively reached the ideal solution based on the Pareto set by utilizing fuzzy decision-making and the IHBA. Furthermore, compared with the scenario without this cost, the results indicated that integrating battery aging costs resulted in an increase of 7.44% in operational expenses and 3.57% in pollution emissions costs.

Suggested Citation

  • Mohana Alanazi & Abdulaziz Alanazi & Zulfiqar Ali Memon & Ahmed Bilal Awan & Mohamed Deriche, 2024. "Multi-Objective Energy Management in Microgrids: Improved Honey Badger Algorithm with Fuzzy Decision-Making and Battery Aging Considerations," Energies, MDPI, vol. 17(17), pages 1-31, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4373-:d:1469017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferahtia, Seydali & Rezk, Hegazy & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm," Applied Energy, Elsevier, vol. 306(PB).
    2. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    3. Dey, Bishwajit & Misra, Srikant & Garcia Marquez, Fausto Pedro, 2023. "Microgrid system energy management with demand response program for clean and economical operation," Applied Energy, Elsevier, vol. 334(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Essam H. Houssein & Awny Sayed, 2023. "Dynamic Candidate Solution Boosted Beluga Whale Optimization Algorithm for Biomedical Classification," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    2. Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
    3. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    4. Jian Zhao & Bochen Zhang & Xiwang Guo & Liang Qi & Zhiwu Li, 2022. "Self-Adapting Spherical Search Algorithm with Differential Evolution for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-31, November.
    5. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Abdul Hai Alami & Enas Taha Sayed, 2023. "Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    6. Fatmah Y. Assiri & Mahmoud Ragab, 2023. "Optimal Deep-Learning-Based Cyberattack Detection in a Blockchain-Assisted IoT Environment," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    7. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    8. Eslami, N. & Yazdani, S. & Mirzaei, M. & Hadavandi, E., 2022. "Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 362-395.
    9. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    10. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    11. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    12. Muhammad Haris Khan & Abasin Ulasyar & Abraiz Khattak & Haris Sheh Zad & Mohammad Alsharef & Ahmad Aziz Alahmadi & Nasim Ullah, 2022. "Optimal Sizing and Allocation of Distributed Generation in the Radial Power Distribution System Using Honey Badger Algorithm," Energies, MDPI, vol. 15(16), pages 1-18, August.
    13. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    14. Chao Zhou & Bing Gao & Haiyue Yang & Xudong Zhang & Jiaqi Liu & Lingling Li, 2022. "Junction Temperature Prediction of Insulated-Gate Bipolar Transistors in Wind Power Systems Based on an Improved Honey Badger Algorithm," Energies, MDPI, vol. 15(19), pages 1-19, October.
    15. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    16. Mousa Mohammed Khubrani & Shadab Alam, 2023. "Blockchain-Based Microgrid for Safe and Reliable Power Generation and Distribution: A Case Study of Saudi Arabia," Energies, MDPI, vol. 16(16), pages 1-34, August.
    17. Seydali Ferahtia & Hegazy Rezk & Rania M. Ghoniem & Ahmed Fathy & Reem Alkanhel & Mohamed M. Ghonem, 2023. "Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    18. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    19. Hegazy Rezk & Rania M. Ghoniem & Seydali Ferahtia & Ahmed Fathy & Mohamed M. Ghoniem & Reem Alkanhel, 2022. "A Comparison of Different Renewable-Based DC Microgrid Energy Management Strategies for Commercial Buildings Applications," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    20. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4373-:d:1469017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.