IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923001010.html
   My bibliography  Save this article

Robust multi-objective optimization for the Iranian electricity market considering green hydrogen and analyzing the performance of different demand response programs

Author

Listed:
  • Khalili, Reza
  • Khaledi, Arian
  • Marzband, Mousa
  • Nematollahi, Amin Foroughi
  • Vahidi, Behrooz
  • Siano, Pierluigi

Abstract

Using renewable energy sources (RES) and green hydrogen has increased dramatically as one of the best solutions to global environmental issues. Applying demand response programs (DRPs) in this context could enhance the system’s efficiency. Evaluating different DRPs’ performances and assessing economic impacts on different parts of the electricity market is essential. The inherent uncertainty of RES and prices is inevitable in electricity markets. As a result of the lack of information, it is crucial to mitigate the risks as much as possible, such as risks related to changes in demand, unit outages, or other traders’ bid strategies. This research introduces a robust multi-objective optimization method to reach the most confident plan for the retailer based on uncertainty in RES and price. The integration of different DRPs is assessed according to the cost to retailers and benefits for consumers using a multi-objective model to survey the impacts of different parts’ decisions on each other. The trade-off among DRPs is considered in this model, and they are traded using a new model to illustrate the daily effect of these programs in monthly operations. This paper uses hydrogen storage (HS) integrated with PV as a distributed energy resource. As the Iranian electricity market has just been established, this research proposes a framework for decision-making in new electricity markets to join future smart energy systems. The mid-term pricing evaluates the system’s performance for more accurate monthly results. Also, the operation cost of the hydrogen storage is modeled to assess its performance in non-robust and robust scheduling. Mixed-integer linear programming (MILP) has been used to model this problem in GAMS. A developed linearizing method is considered with a controllable amount of errors to reduce the volume and time of the computation. Finally, the cost of consumers in non-robust and robust market planning in the presence of DRPs is reduced by 8.77 % and 9.66 %, respectively, and HS has a compelling performance in peak-shaving and load-shifting.

Suggested Citation

  • Khalili, Reza & Khaledi, Arian & Marzband, Mousa & Nematollahi, Amin Foroughi & Vahidi, Behrooz & Siano, Pierluigi, 2023. "Robust multi-objective optimization for the Iranian electricity market considering green hydrogen and analyzing the performance of different demand response programs," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923001010
    DOI: 10.1016/j.apenergy.2023.120737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    2. Zeynali, Saeed & Nasiri, Nima & Marzband, Mousa & Ravadanegh, Sajad Najafi, 2021. "A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets," Applied Energy, Elsevier, vol. 300(C).
    3. Marzband, Mousa & Ghadimi, Majid & Sumper, Andreas & Domínguez-García, José Luis, 2014. "Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode," Applied Energy, Elsevier, vol. 128(C), pages 164-174.
    4. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    5. Noorollahi, Younes & Golshanfard, Aminabbas & Ansaripour, Shiva & Khaledi, Arian & Shadi, Mehdi, 2021. "Solar energy for sustainable heating and cooling energy system planning in arid climates," Energy, Elsevier, vol. 218(C).
    6. Noorollahi, Younes & Golshanfard, Aminabbas & Hashemi-Dezaki, Hamed, 2022. "A scenario-based approach for optimal operation of energy hub under different schemes and structures," Energy, Elsevier, vol. 251(C).
    7. Aghamohammadloo, Hossein & Talaeizadeh, Valiollah & Shahanaghi, Kamran & Aghaei, Jamshid & Shayanfar, Heidarali & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Integrated Demand Response programs and energy hubs retail energy market modelling," Energy, Elsevier, vol. 234(C).
    8. Marzband, Mousa & Sumper, Andreas & Ruiz-Álvarez, Albert & Domínguez-García, José Luis & Tomoiagă, Bogdan, 2013. "Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets," Applied Energy, Elsevier, vol. 106(C), pages 365-376.
    9. Das, Ridoy & Wang, Yue & Putrus, Ghanim & Kotter, Richard & Marzband, Mousa & Herteleer, Bert & Warmerdam, Jos, 2020. "Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services," Applied Energy, Elsevier, vol. 257(C).
    10. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    11. Nasiri, Nima & Zeynali, Saeed & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2021. "A hybrid robust-stochastic approach for strategic scheduling of a multi-energy system as a price-maker player in day-ahead wholesale market," Energy, Elsevier, vol. 235(C).
    12. Sharifi, R. & Fathi, S.H. & Vahidinasab, V., 2017. "A review on Demand-side tools in electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 565-572.
    13. Charwand, Mansour & Gitizadeh, Mohsen & Siano, Pierluigi, 2017. "A new active portfolio risk management for an electricity retailer based on a drawdown risk preference," Energy, Elsevier, vol. 118(C), pages 387-398.
    14. Khaloie, Hooman & Anvari-Moghaddam, Amjad & Contreras, Javier & Siano, Pierluigi, 2021. "Risk-involved optimal operating strategy of a hybrid power generation company: A mixed interval-CVaR model," Energy, Elsevier, vol. 232(C).
    15. Sun, Shitong & Kazemi-Razi, S. Mahdi & Kaigutha, Lisa G. & Marzband, Mousa & Nafisi, Hamed & Al-Sumaiti, Ameena Saad, 2022. "Day-ahead offering strategy in the market for concentrating solar power considering thermoelectric decoupling by a compressed air energy storage," Applied Energy, Elsevier, vol. 305(C).
    16. Dominguez, R. & Baringo, L. & Conejo, A.J., 2012. "Optimal offering strategy for a concentrating solar power plant," Applied Energy, Elsevier, vol. 98(C), pages 316-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Jihao & Zhang, Xinqi & Zhang, Haoran & Wang, Qiliang & Yan, Jinyue & Xiao, Linda, 2024. "Automated detection and diagnosis of leak fault considering volatility by graph deep probability learning," Applied Energy, Elsevier, vol. 361(C).
    2. Khaledi, Arian & Saifoddin, Amirali, 2023. "Three-stage resilience-oriented active distribution systems operation after natural disasters," Energy, Elsevier, vol. 282(C).
    3. Jin, Haowei & Guo, Jue & Tang, Lei & Du, Pei, 2024. "Long-term electricity demand forecasting under low-carbon energy transition: Based on the bidirectional feedback between power demand and generation mix," Energy, Elsevier, vol. 286(C).
    4. Yang, Senmiao & Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Wang, Kun & Fu, Xiaowen, 2024. "Is artificial intelligence technology innovation a recipe for low-carbon energy transition? A global perspective," Energy, Elsevier, vol. 300(C).
    5. Lerch, Philipp & Scheller, Fabian & Reichelt, David G. & Menzel, Katharina & Bruckner, Thomas, 2024. "Electricity cost and CO2 savings potential for chlor-alkali electrolysis plants: Benefits of electricity price dependent demand response," Applied Energy, Elsevier, vol. 355(C).
    6. Zhu, Mengshu & Ai, Xiaomeng & Fang, Jiakun & Cui, Shichang & Wu, Kejing & Zheng, Lufan & Wen, Jinyu, 2024. "Optimal scheduling of hydrogen energy hub for stable demand with uncertain photovoltaic and biomass," Applied Energy, Elsevier, vol. 360(C).
    7. Yang, Lijun & Jiang, Yaning & Chong, Zhenxiao, 2023. "Optimal scheduling of electro-thermal system considering refined demand response and source-load-storage cooperative hydrogen production," Renewable Energy, Elsevier, vol. 215(C).
    8. Pengfei Duan & Mengdan Feng & Bingxu Zhao & Qingwen Xue & Kang Li & Jinglei Chen, 2024. "Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response," Sustainability, MDPI, vol. 16(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yunpeng & Razzaq, Asif & Sun, Huaping & Irfan, Muhammad, 2022. "The asymmetric influence of renewable energy and green innovation on carbon neutrality in China: Analysis from non-linear ARDL model," Renewable Energy, Elsevier, vol. 193(C), pages 334-343.
    2. Dey, Bishwajit & Misra, Srikant & Garcia Marquez, Fausto Pedro, 2023. "Microgrid system energy management with demand response program for clean and economical operation," Applied Energy, Elsevier, vol. 334(C).
    3. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    4. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    5. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
    6. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    7. Sun, Shitong & Kazemi-Razi, S. Mahdi & Kaigutha, Lisa G. & Marzband, Mousa & Nafisi, Hamed & Al-Sumaiti, Ameena Saad, 2022. "Day-ahead offering strategy in the market for concentrating solar power considering thermoelectric decoupling by a compressed air energy storage," Applied Energy, Elsevier, vol. 305(C).
    8. Zeynali, Saeed & Nasiri, Nima & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2022. "A three-level framework for strategic participation of aggregated electric vehicle-owning households in local electricity and thermal energy markets," Applied Energy, Elsevier, vol. 324(C).
    9. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    10. Tian, Xiaoge & Chen, Weiming & Hu, Jinglu, 2023. "Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province," Energy, Elsevier, vol. 262(PA).
    11. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Zhun Meng & Guo-Dong Li, 2017. "An Isolated Three-Port Bidirectional DC-DC Converter with Enlarged ZVS Region for HESS Applications in DC Microgrids," Energies, MDPI, vol. 10(4), pages 1-23, April.
    12. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    13. Meng Xiong & Feng Gao & Kun Liu & Siyun Chen & Jiaojiao Dong, 2015. "Optimal Real-Time Scheduling for Hybrid Energy Storage Systems and Wind Farms Based on Model Predictive Control," Energies, MDPI, vol. 8(8), pages 1-32, August.
    14. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    15. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    16. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    17. Mohammad Hossein Nejati Amiri & Mehdi Mehdinejad & Amin Mohammadpour Shotorbani & Heidarali Shayanfar, 2023. "Heuristic Retailer’s Day-Ahead Pricing Based on Online-Learning of Prosumer’s Optimal Energy Management Model," Energies, MDPI, vol. 16(3), pages 1-21, January.
    18. Goodall, G.H. & Hering, A.S. & Newman, A.M., 2017. "Characterizing solutions in optimal microgrid procurement and dispatch strategies," Applied Energy, Elsevier, vol. 201(C), pages 1-19.
    19. AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Li, Yan & Adamowski, Jan F., 2018. "Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting," Applied Energy, Elsevier, vol. 217(C), pages 422-439.
    20. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923001010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.