IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v204y2023icp493-506.html
   My bibliography  Save this article

A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm

Author

Listed:
  • Sheng, Wanxing
  • Li, Rui
  • Yan, Tao
  • Tseng, Ming-Lang
  • Lou, Jiale
  • Li, Lingling

Abstract

This study proposes a hybrid dynamic economics emissions dispatch (HDEED) model for a distributed power system containing thermal generating units, wind farms and photovoltaic plants. The construction of novel distributed power system has been a significant means of tackling the energy crisis. (1) the relationship between each generation unit of the power generation system is analyzed, as well as the power balance constraint, transmission loss constraint, output capacity of each generation unit and slope constraint of the power system; and (2) the operating cost objective function is established with the objective of minimizing unit's generation cost, pollutant emission objective function, and the satisfaction weight coefficient. A novel and improved COOT optimization algorithm is presented to enhance convergence performance and solution speed in solving the problem by introducing a chaotic initialization strategy. A mutation strategy and an improved chain movement of the model solution are verified. The result shows that for the HDEED problem, the ICOOT algorithm reduces the operating cost targets by 1.28%, 6.99% and 7.44% and the pollutant emission targets by 2.98%, 5.46% and 10.88% compared to other algorithms. The developed model provides an effective solution for improving the operational stability, economy and cleanliness of system.

Suggested Citation

  • Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
  • Handle: RePEc:eee:renene:v:204:y:2023:i:c:p:493-506
    DOI: 10.1016/j.renene.2023.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123000101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Hussain, Moaid K. & Adzman, Mohd Rafi & Ghazali, Nur Hafizah & Ramli, Makbul A.M. & Khalil Zidane, Tekai Eddine, 2022. "A new optimization strategy for wind/diesel/battery hybrid energy system," Energy, Elsevier, vol. 239(PE).
    2. Elattar, Ehab E., 2019. "Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithm," Energy, Elsevier, vol. 171(C), pages 256-269.
    3. Jayabarathi, T. & Raghunathan, T. & Adarsh, B.R. & Suganthan, Ponnuthurai Nagaratnam, 2016. "Economic dispatch using hybrid grey wolf optimizer," Energy, Elsevier, vol. 111(C), pages 630-641.
    4. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    5. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    6. Ferahtia, Seydali & Rezk, Hegazy & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm," Applied Energy, Elsevier, vol. 306(PB).
    7. Huifeng Zhang & Xiaohui Lei & Chao Wang & Dong Yue & Xiangpeng Xie, 2017. "Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-25, September.
    8. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    9. Qiao, Baihao & Liu, Jing, 2020. "Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm," Renewable Energy, Elsevier, vol. 154(C), pages 316-336.
    10. Chen, Xu & Tang, Guowei, 2022. "Solving static and dynamic multi-area economic dispatch problems using an improved competitive swarm optimization algorithm," Energy, Elsevier, vol. 238(PC).
    11. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2020. "An Elitist Multi-Objective Particle Swarm Optimization Algorithm for Sustainable Dynamic Economic Emission Dispatch Integrating Wind Farms," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    12. Yang, Qiangda & Liu, Peng & Zhang, Jie & Dong, Ning, 2022. "Combined heat and power economic dispatch using an adaptive cuckoo search with differential evolution mutation," Applied Energy, Elsevier, vol. 307(C).
    13. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    14. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Jalili, Mahdi, 2023. "Optimization of integrated load dispatch in multi-fueled renewable rich power systems using fractal firefly algorithm," Energy, Elsevier, vol. 278(PA).
    2. Arunachalam Sundaram & Nasser S. Alkhaldi, 2024. "Multi-Objective Stochastic Paint Optimizer for Solving Dynamic Economic Emission Dispatch with Transmission Loss Prediction Using Random Forest Machine Learning Model," Energies, MDPI, vol. 17(4), pages 1-26, February.
    3. Shen, Haotian & Zhang, Hualiang & Xu, Yujie & Chen, Haisheng & Zhang, Zhilai & Li, Wenkai & Su, Xu & Xu, Yalin & Zhu, Yilin, 2024. "Two stage robust economic dispatching of microgrid considering uncertainty of wind, solar and electricity load along with carbon emission predicted by neural network model," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    2. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    3. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    4. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    5. Kansal, Veenus & Dhillon, J.S., 2022. "Ameliorated artificial hummingbird algorithm for coordinated wind-solar-thermal generation scheduling problem in multiobjective framework," Applied Energy, Elsevier, vol. 326(C).
    6. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    7. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    8. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    9. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhang, Xi-Jia & Tang, Yu & You, Guo-Dong & Li, Ji-Xiang & Zhao, Shuang-Le & Hou, Xiao-Xin, 2023. "Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method," Renewable Energy, Elsevier, vol. 219(P1).
    10. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    11. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    12. Irshad, Ahmad Shah & Samadi, Wais Khan & Fazli, Agha Mohammad & Noori, Abdul Ghani & Amin, Ahmad Shah & Zakir, Mohammad Naseer & Bakhtyal, Irfan Ahmad & Karimi, Bashir Ahmad & Ludin, Gul Ahmad & Senjy, 2023. "Resilience and reliable integration of PV-wind and hydropower based 100% hybrid renewable energy system without any energy storage system for inaccessible area electrification," Energy, Elsevier, vol. 282(C).
    13. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    14. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhao, Shuang-Le & You, Guo-Dong & Hou, Xiao-Xin & Yu, Jia-Li & Li, Ling-Ling & Chen, Bo, 2023. "Improving the economic and environmental benefits of the energy system: A novel hybrid economic emission dispatch considering clean energy power uncertainty," Energy, Elsevier, vol. 285(C).
    15. Lingling Li & Jiarui Pei & Qiang Shen, 2023. "A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind–Thermal Power Microgrids," Energies, MDPI, vol. 16(10), pages 1-23, May.
    16. Benyekhlef Larouci & Ahmed Nour El Islam Ayad & Hisham Alharbi & Turki E. A. Alharbi & Houari Boudjella & Abdelkader Si Tayeb & Sherif S. M. Ghoneim & Saad A. Mohamed Abdelwahab, 2022. "Investigation on New Metaheuristic Algorithms for Solving Dynamic Combined Economic Environmental Dispatch Problems," Sustainability, MDPI, vol. 14(9), pages 1-27, May.
    17. Li Yan & Zhengyu Zhu & Xiaopeng Kang & Boyang Qu & Baihao Qiao & Jiajia Huan & Xuzhao Chai, 2022. "Multi-Objective Dynamic Economic Emission Dispatch with Electric Vehicle–Wind Power Interaction Based on a Self-Adaptive Multiple-Learning Harmony-Search Algorithm," Energies, MDPI, vol. 15(14), pages 1-22, July.
    18. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2022. "Hybrid Chaotic Maps-Based Artificial Bee Colony for Solving Wind Energy-Integrated Power Dispatch Problem," Energies, MDPI, vol. 15(13), pages 1-26, June.
    19. Chen, Min-Rong & Zeng, Guo-Qiang & Lu, Kang-Di, 2019. "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, Elsevier, vol. 143(C), pages 277-294.
    20. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:204:y:2023:i:c:p:493-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.