IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v151y2015icp192-205.html
   My bibliography  Save this article

Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system

Author

Listed:
  • Ikeda, Shintaro
  • Ooka, Ryozo

Abstract

Storage equipment, such as batteries and thermal energy storage (TES), has become increasingly important recently for peak-load shifting in energy systems. Mathematical programming methods, used frequently in previous studies to optimize operating schedules, can always be used to derive a theoretically optimal solution, but are computationally time consuming. Consequently, we use metaheuristics, such as genetic algorithms (GAs), particle swarm optimization (PSO), and cuckoo search (CS), to optimize operating schedules of energy systems that include a battery, TES, and an air-source heat pump. In this paper, we used a GA, differential evolution (DE), our own proposed mutation-PSO (m-PSO), CS, and the self-adaptive learning bat algorithm (SLBA), of which m-PSO was the fastest, and CS was the most accurate. CS obtained the semi-optimal solution 135 times as fast as dynamic programming (DP), a mathematical programming method with 0.22% tolerance. Thus, we showed that metaheuristics, especially m-PSO and CS, have advantages over DP for optimization of the operating schedules of energy systems that include a battery and TES.

Suggested Citation

  • Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
  • Handle: RePEc:eee:appene:v:151:y:2015:i:c:p:192-205
    DOI: 10.1016/j.apenergy.2015.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    2. Ashouri, Araz & Fux, Samuel S. & Benz, Michael J. & Guzzella, Lino, 2013. "Optimal design and operation of building services using mixed-integer linear programming techniques," Energy, Elsevier, vol. 59(C), pages 365-376.
    3. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    4. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    5. Lee, Wen-Shing & Chen, Yi -Ting & Wu, Ting-Hau, 2009. "Optimization for ice-storage air-conditioning system using particle swarm algorithm," Applied Energy, Elsevier, vol. 86(9), pages 1589-1595, September.
    6. Wakui, Tetsuya & Yokoyama, Ryohei, 2011. "Optimal sizing of residential gas engine cogeneration system for power interchange operation from energy-saving viewpoint," Energy, Elsevier, vol. 36(6), pages 3816-3824.
    7. Fong, K.F. & Yuen, S.Y. & Chow, C.K. & Leung, S.W., 2010. "Energy management and design of centralized air-conditioning systems through the non-revisiting strategy for heuristic optimization methods," Applied Energy, Elsevier, vol. 87(11), pages 3494-3506, November.
    8. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    9. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    10. Piechocki, Janusz & Ambroziak, Dominik & Palkowski, Aleksander & Redlarski, Grzegorz, 2014. "Use of Modified Cuckoo Search algorithm in the design process of integrated power systems for modern and energy self-sufficient farms," Applied Energy, Elsevier, vol. 114(C), pages 901-908.
    11. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    12. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    13. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    14. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    15. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
    16. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    17. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    2. Dong Zhang & GM Shafiullah & Choton Kanti Das & Kok Wai Wong, 2023. "Optimal Allocation of Battery Energy Storage Systems to Enhance System Performance and Reliability in Unbalanced Distribution Networks," Energies, MDPI, vol. 16(20), pages 1-35, October.
    3. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    4. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    5. Ikeda, Shintaro & Choi, Wonjun & Ooka, Ryozo, 2017. "Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature," Applied Energy, Elsevier, vol. 193(C), pages 466-478.
    6. Mohammad Mehdi Lotfinejad & Reza Hafezi & Majid Khanali & Seyed Sina Hosseini & Mehdi Mehrpooya & Shahaboddin Shamshirband, 2018. "A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study," Energies, MDPI, vol. 11(5), pages 1-15, May.
    7. Ding, Yan & Wang, Qiaochu & Kong, Xiangfei & Yang, Kun, 2019. "Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios," Applied Energy, Elsevier, vol. 250(C), pages 1600-1617.
    8. Ghaemi, Zahra & Tran, Thomas T.D. & Smith, Amanda D., 2022. "Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties," Applied Energy, Elsevier, vol. 321(C).
    9. Elkazaz, Mahmoud & Sumner, Mark & Naghiyev, Eldar & Pholboon, Seksak & Davies, Richard & Thomas, David, 2020. "A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers," Applied Energy, Elsevier, vol. 269(C).
    10. Scioletti, Michael S. & Goodman, Johanna K. & Kohl, Paul A. & Newman, Alexandra M., 2016. "A physics-based integer-linear battery modeling paradigm," Applied Energy, Elsevier, vol. 176(C), pages 245-257.
    11. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    12. Ikeda, Shintaro & Ooka, Ryozo, 2019. "Application of differential evolution-based constrained optimization methods to district energy optimization and comparison with dynamic programming," Applied Energy, Elsevier, vol. 254(C).
    13. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    14. Iijima, Fuyumi & Ikeda, Shintaro & Nagai, Tatsuo, 2022. "Automated computational design method for energy systems in buildings using capacity and operation optimization," Applied Energy, Elsevier, vol. 306(PA).
    15. Serrano-Arévalo, Tania Itzel & López-Flores, Francisco Javier & Raya-Tapia, Alma Yunuen & Ramírez-Márquez, César & Ponce-Ortega, José María, 2023. "Optimal expansion for a clean power sector transition in Mexico based on predicted electricity demand using deep learning scheme," Applied Energy, Elsevier, vol. 348(C).
    16. Li, Xiwang & Wen, Jin & Malkawi, Ali, 2016. "An operation optimization and decision framework for a building cluster with distributed energy systems," Applied Energy, Elsevier, vol. 178(C), pages 98-109.
    17. Seijo, Sandra & del Campo, Inés & Echanobe, Javier & García-Sedano, Javier, 2016. "Modeling and multi-objective optimization of a complex CHP process," Applied Energy, Elsevier, vol. 161(C), pages 309-319.
    18. Loke Kok Foong & Binh Nguyen Le, 2022. "Teaching–Learning–Based Optimization (TLBO) in Hybridized with Fuzzy Inference System Estimating Heating Loads," Energies, MDPI, vol. 15(21), pages 1-20, November.
    19. Sonja Kolen & Stefan Dähling & Timo Isermann & Antonello Monti, 2018. "Enabling the Analysis of Emergent Behavior in Future Electrical Distribution Systems Using Agent-Based Modeling and Simulation," Complexity, Hindawi, vol. 2018, pages 1-16, February.
    20. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    21. Zhang, Hao & Cai, Jie & Fang, Kan & Zhao, Fu & Sutherland, John W., 2017. "Operational optimization of a grid-connected factory with onsite photovoltaic and battery storage systems," Applied Energy, Elsevier, vol. 205(C), pages 1538-1547.
    22. Renaldi, R. & Kiprakis, A. & Friedrich, D., 2017. "An optimisation framework for thermal energy storage integration in a residential heat pump heating system," Applied Energy, Elsevier, vol. 186(P3), pages 520-529.
    23. Elena Niculina Dragoi & Vlad Dafinescu, 2021. "Review of Metaheuristics Inspired from the Animal Kingdom," Mathematics, MDPI, vol. 9(18), pages 1-52, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2017. "Development of an optimization based design framework for microgrid energy systems," Energy, Elsevier, vol. 140(P1), pages 340-351.
    2. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    3. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    4. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    5. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    6. Luo, Na & Hong, Tianzhen & Li, Hui & Jia, Ruoxi & Weng, Wenguo, 2017. "Data analytics and optimization of an ice-based energy storage system for commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 459-475.
    7. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    8. Tao Zhang & Minli Wang & Peihong Wang & Junyu Liang, 2020. "Optimal Design of a Combined Cooling, Heating, and Power System and Its Ability to Adapt to Uncertainty," Energies, MDPI, vol. 13(14), pages 1-17, July.
    9. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    10. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
    11. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
    12. Stojiljković, Mirko M., 2017. "Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics," Energy, Elsevier, vol. 137(C), pages 1231-1251.
    13. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    14. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    15. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    16. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    17. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    18. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    19. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    20. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:151:y:2015:i:c:p:192-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.