IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp564-579.html
   My bibliography  Save this article

Floating search space: A new idea for efficient solving the Economic and emission dispatch problem

Author

Listed:
  • Amiri, M.
  • Khanmohammadi, S.
  • Badamchizadeh, M.A.

Abstract

Efficient solving of practical optimization problems in important fields like the energy and its peripheral problems has been an ever-growing attractive topic for many academicians and industries during the recent decades. This paper introduces a swarm-based optimization method, namely the Floating Search Space, to solve one of the most important energy problems called the “Economic and Emission Dispatch”. The proposed method, which resizes and floats the allowed search region inside the main search space, is attached to three versions of swarm intelligence-based Optimization algorithms, as a supplementary approach, to enhance their performance and achieve high quality solutions in a more reliable way. The proposed method, which receives online feedbacks from the population to regulate itself and define most promising areas inside the search space is a simple parameter-free technique which can be easily attached to any intelligent optimizer. Simulation results approve that the proposed method is able to obtain competing solutions to the real-world modeled Economic and Emission Dispatch problems by increasing the accuracy, decreasing computational budget, and achieving more robust performance by reducing stagnations and rising success rate.

Suggested Citation

  • Amiri, M. & Khanmohammadi, S. & Badamchizadeh, M.A., 2018. "Floating search space: A new idea for efficient solving the Economic and emission dispatch problem," Energy, Elsevier, vol. 158(C), pages 564-579.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:564-579
    DOI: 10.1016/j.energy.2018.05.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830882X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khanmohammadi, S. & Amiri, M. & Haque, M. Tarafdar, 2010. "A new three-stage method for solving unit commitment problem," Energy, Elsevier, vol. 35(7), pages 3072-3080.
    2. Ma, Haiping & Yang, Zhile & You, Pengcheng & Fei, Minrui, 2017. "Multi-objective biogeography-based optimization for dynamic economic emission load dispatch considering plug-in electric vehicles charging," Energy, Elsevier, vol. 135(C), pages 101-111.
    3. Moumita Pradhan & Provas Kumar Roy & Tandra Pal, 2017. "Economic Load Dispatch Using Oppositional Backtracking Search Algorithm," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 6(2), pages 79-97, April.
    4. Provas Kumar Roy & Madhumita Ghosh, 2017. "Combined Heat and Power Dispatch using Hybrid Genetic Algorithm and Biogeography-based Optimization," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 6(1), pages 49-65, January.
    5. Liao, Gwo-Ching, 2011. "A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power," Energy, Elsevier, vol. 36(2), pages 1018-1029.
    6. Liu, Xueying & Fu, Meiling, 2015. "Cuckoo search algorithm based on frog leaping local search and chaos theory," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1083-1092.
    7. Subhajit Roy & Kuntal Bhattacharjee & Aniruddha Bhattacharya, 2017. "A Modern Approach to Solve of Economic Load Dispatch using Group Leader Optimization Technique," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 6(1), pages 66-85, January.
    8. Mahdi, Fahad Parvez & Vasant, Pandian & Kallimani, Vish & Watada, Junzo & Fai, Patrick Yeoh Siew & Abdullah-Al-Wadud, M., 2018. "A holistic review on optimization strategies for combined economic emission dispatch problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3006-3020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    2. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Dey, Bishwajit & Misra, Srikant & Garcia Marquez, Fausto Pedro, 2023. "Microgrid system energy management with demand response program for clean and economical operation," Applied Energy, Elsevier, vol. 334(C).
    4. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    5. Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    2. Qiao, Baihao & Liu, Jing, 2020. "Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm," Renewable Energy, Elsevier, vol. 154(C), pages 316-336.
    3. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    4. Mohammadi-ivatloo, Behnam & Rabiee, Abbas & Soroudi, Alireza & Ehsan, Mehdi, 2012. "Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch," Energy, Elsevier, vol. 44(1), pages 228-240.
    5. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    6. Rahmani, Shima & Amjady, Nima, 2017. "A new optimal power flow approach for wind energy integrated power systems," Energy, Elsevier, vol. 134(C), pages 349-359.
    7. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    8. Miranda-Colorado, Roger, 2020. "Parameter identification of conservative Hamiltonian systems using first integrals," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    9. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
    10. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    11. Lai, Wenhao & Zheng, Xiaoliang & Song, Qi & Hu, Feng & Tao, Qiong & Chen, Hualiang, 2022. "Multi-objective membrane search algorithm: A new solution for economic emission dispatch," Applied Energy, Elsevier, vol. 326(C).
    12. Tingli Cheng & Minyou Chen & Yingxiang Wang & Bo Li & Muhammad Arshad Shehzad Hassan & Tao Chen & Ruilin Xu, 2018. "Adaptive Robust Method for Dynamic Economic Emission Dispatch Incorporating Renewable Energy and Energy Storage," Complexity, Hindawi, vol. 2018, pages 1-13, June.
    13. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    14. Vasilios A. Tsalavoutis & Constantinos G. Vrionis & Athanasios I. Tolis, 2021. "Optimizing a unit commitment problem using an evolutionary algorithm and a plurality of priority lists," Operational Research, Springer, vol. 21(1), pages 1-54, March.
    15. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    16. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    17. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    18. Bing Bu & Guoying Qin & Ling Li & Guojie Li, 2018. "An Energy Efficient Train Dispatch and Control Integrated Method in Urban Rail Transit," Energies, MDPI, vol. 11(5), pages 1-23, May.
    19. Shukla, Anup & Singh, S.N., 2016. "Advanced three-stage pseudo-inspired weight-improved crazy particle swarm optimization for unit commitment problem," Energy, Elsevier, vol. 96(C), pages 23-36.
    20. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:564-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.