IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923012023.html
   My bibliography  Save this article

Incentive-based demand response under incomplete information based on the deep deterministic policy gradient

Author

Listed:
  • Ma, Siyu
  • Liu, Hui
  • Wang, Ni
  • Huang, Lidong
  • Goh, Hui Hwang

Abstract

Incentive-based demand response (IBDR), as an important measure to encourage the users to participate in the demand-side management, is commonly modeled as the Stackelberg game with the complete information. However, it is difficult to acquire the users' complete information due to privacy protections. In this paper, a Markov decision process (MDP) game model is proposed to address IBDR under the incomplete information, which is based on a deep deterministic policy gradient algorithm (DDPG). Considering differences on the users' load, the K-means method is used to classify different users according to the daily load rate and the peak-to-valley difference, such that different types of user load will have different incentive prices to participate in demand responses. The proposed DDPG algorithm can improve the calculation efficiency of the Nash equilibrium solution of the IBDR under the incomplete information, as it can deal with the multi-dimensional continuous state and action spaces. Simulation results show that the proposed approach can achieve the Nash equilibrium under the incomplete information and has the higher calculation accuracy and the lower calculation time in comparison to the Q learning method.

Suggested Citation

  • Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Goh, Hui Hwang, 2023. "Incentive-based demand response under incomplete information based on the deep deterministic policy gradient," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012023
    DOI: 10.1016/j.apenergy.2023.121838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    2. Rasheed, Muhammad Babar & R-Moreno, MarĂ­a D., 2022. "Minimizing pricing policies based on user load profiles and residential demand responses in smart grids," Applied Energy, Elsevier, vol. 310(C).
    3. Zheng, Shunlin & Qi, Qi & Sun, Yi & Ai, Xin, 2023. "Integrated demand response considering substitute effect and time-varying response characteristics under incomplete information," Applied Energy, Elsevier, vol. 333(C).
    4. Zhong, Shengyuan & Wang, Xiaoyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Wang, Yongzhen & Deng, Shuai & Zhu, Jiebei, 2021. "Deep reinforcement learning framework for dynamic pricing demand response of regenerative electric heating," Applied Energy, Elsevier, vol. 288(C).
    5. Tang, Rui & Wang, Shengwei & Li, Hangxin, 2019. "Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids," Applied Energy, Elsevier, vol. 250(C), pages 118-130.
    6. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    7. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    8. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    9. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    10. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    11. Kong, Xiangyu & Kong, Deqian & Yao, Jingtao & Bai, Linquan & Xiao, Jie, 2020. "Online pricing of demand response based on long short-term memory and reinforcement learning," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Su, Jinshuo & Zhao, Teyang, 2024. "Incentive-based integrated demand response with multi-energy time-varying carbon emission factors," Applied Energy, Elsevier, vol. 359(C).
    2. Yu, Zhou-Chen & Bao, Yu-Qing & Yang, Xiao, 2024. "Day-ahead scheduling of air-conditioners based on equivalent energy storage model under temperature-set-point control," Applied Energy, Elsevier, vol. 368(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    2. Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).
    3. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    4. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    5. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).
    7. Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    8. Razzak, Abdur & Islam, Md. Tariqul & Roy, Palash & Razzaque, Md. Abdur & Hassan, Md. Rafiul & Hassan, Mohammad Mehedi, 2024. "Leveraging Deep Q-Learning to maximize consumer quality of experience in smart grid," Energy, Elsevier, vol. 290(C).
    9. Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
    10. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    11. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Su, Jinshuo & Zhao, Teyang, 2024. "Incentive-based integrated demand response with multi-energy time-varying carbon emission factors," Applied Energy, Elsevier, vol. 359(C).
    12. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    13. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    14. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    15. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    16. Tsaousoglou, Georgios & Giraldo, Juan S. & Paterakis, Nikolaos G., 2022. "Market Mechanisms for Local Electricity Markets: A review of models, solution concepts and algorithmic techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Lu, Renzhi & Li, Yi-Chang & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2020. "Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management," Applied Energy, Elsevier, vol. 276(C).
    19. Gao, Jianwei & Ma, Zeyang & Guo, Fengjia, 2019. "The influence of demand response on wind-integrated power system considering participation of the demand side," Energy, Elsevier, vol. 178(C), pages 723-738.
    20. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.