IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v336y2023ics0306261923000727.html
   My bibliography  Save this article

Data-driven fault detection and isolation in DC microgrids without prior fault data: A transfer learning approach

Author

Listed:
  • Wang, Ting
  • Zhang, Chunyan
  • Hao, Zhiguo
  • Monti, Antonello
  • Ponci, Ferdinanda

Abstract

The lack of fault data is the major constraint on data-driven fault detection and isolation schemes for DC microgrids. To solve this problem, this paper develops an adversarial-based deep transfer learning model that can detect and classify short-circuit faults in DC microgrids without using historical fault data. In this transfer learning framework, the knowledge of faults is extracted from the transient features of line currents during normal operating disturbances, which is adversarially augmented and then transferred to a target domain as the labels of faults. With the transferred knowledge, a deep learning model combining convolutional neural network and attention-based bidirectional long short-term memory is trained, which is strengthened by attention and soft-voting ensemble mechanisms. In verification tests, this model reaches a high accuracy of over 90% in classifying various short-circuit faults in a multi-terminal DC microgrid model within a short response time of less than 1 ms. Moreover, it is robust against measurement noises and adaptive to system configuration changes. The test results prove the effectiveness of the proposed method in the protection of DC microgrids without prior knowledge of faults.

Suggested Citation

  • Wang, Ting & Zhang, Chunyan & Hao, Zhiguo & Monti, Antonello & Ponci, Ferdinanda, 2023. "Data-driven fault detection and isolation in DC microgrids without prior fault data: A transfer learning approach," Applied Energy, Elsevier, vol. 336(C).
  • Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923000727
    DOI: 10.1016/j.apenergy.2023.120708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mishra, Manohar & Patnaik, Bhaskar & Biswal, Monalisa & Hasan, Shazia & Bansal, Ramesh C., 2022. "A systematic review on DC-microgrid protection and grounding techniques: Issues, challenges and future perspective," Applied Energy, Elsevier, vol. 313(C).
    2. Ferahtia, Seydali & Rezk, Hegazy & Olabi, A.G. & Alhumade, Hesham & Bamufleh, Hisham S. & Doranehgard, Mohammad Hossein & Abdelkareem, Mohammad Ali, 2022. "Optimal techno-economic multi-level energy management of renewable-based DC microgrid for commercial buildings applications," Applied Energy, Elsevier, vol. 327(C).
    3. Bayati, Navid & Balouji, Ebrahim & Baghaee, Hamid Reza & Hajizadeh, Amin & Soltani, Mohsen & Lin, Zhengyu & Savaghebi, Mehdi, 2022. "Locating high-impedance faults in DC microgrid clusters using support vector machines," Applied Energy, Elsevier, vol. 308(C).
    4. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    5. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    2. Belqasem Aljafari & Subramanian Vasantharaj & Vairavasundaram Indragandhi & Rhanganath Vaibhav, 2022. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-30, September.
    3. Xie, Xiangmin & Chen, Daolian, 2022. "Data-driven dynamic harmonic model for modern household appliances," Applied Energy, Elsevier, vol. 312(C).
    4. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    5. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2022. "Review of Methods for Addressing Challenging Issues in the Operation of Protection Devices in Microgrids with Voltages of up to 1 kV That Integrates Distributed Energy Resources," Energies, MDPI, vol. 15(23), pages 1-22, December.
    6. Patrik Ollas & Torbjörn Thiringer & Mattias Persson & Caroline Markusson, 2023. "Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage," Energies, MDPI, vol. 16(3), pages 1-21, January.
    7. Mustapha Mukhtar & Bismark Ameyaw & Nasser Yimen & Quixin Zhang & Olusola Bamisile & Humphrey Adun & Mustafa Dagbasi, 2021. "Building Retrofit and Energy Conservation/Efficiency Review: A Techno-Environ-Economic Assessment of Heat Pump System Retrofit in Housing Stock," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    8. Patrik Ollas & Torbjörn Thiringer & Mattias Persson, 2024. "Enhanced DC Building Distribution Performance Using a Modular Grid-Tied Converter Design," Energies, MDPI, vol. 17(13), pages 1-18, June.
    9. Emmers, Glenn & Van Acker, Tom & Driesen, Johan, 2024. "A semi-Markovian approach to evaluate the availability of low voltage direct current systems with integrated battery storage," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
    11. Topa, A.O. & Gil, J.D. & Álvarez, J.D. & Torres, J.L., 2024. "A hybrid-MPC based energy management system with time series constraints for a bioclimatic building," Energy, Elsevier, vol. 287(C).
    12. Arthur Santos & Gerald Duggan & Stephen Frank & Daniel Gerber & Daniel Zimmerle, 2021. "Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings," Energies, MDPI, vol. 14(18), pages 1-24, September.
    13. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    14. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    15. Seung-Taek Lim & Ki-Yeon Lee & Dong-Ju Chae & Sung-Hun Lim, 2022. "Design of Mid-Point Ground with Resistors and Capacitors in Mono-Polar LVDC System," Energies, MDPI, vol. 15(22), pages 1-20, November.
    16. Syed Basit Ali Bukhari & Abdul Wadood & Tahir Khurshaid & Khawaja Khalid Mehmood & Sang Bong Rhee & Ki-Chai Kim, 2022. "Empirical Wavelet Transform-Based Intelligent Protection Scheme for Microgrids," Energies, MDPI, vol. 15(21), pages 1-17, October.
    17. Jingang Han & Shiwei Lin & Boyu Pu, 2024. "Hierarchical Energy Management of DC Microgrid with Photovoltaic Power Generation and Energy Storage for 5G Base Station," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    18. Hasan Erteza Gelani & Faizan Dastgeer & Sayyad Ahmad Ali Shah & Faisal Saeed & Muhammad Hassan Yousuf & Hafiz Muhammad Waqas Afzal & Abdullah Bilal & Md. Shahariar Chowdhury & Kuaanan Techato & Sittip, 2022. "Comparative Efficiency and Sensitivity Analysis of AC and DC Power Distribution Paradigms for Residential Localities," Sustainability, MDPI, vol. 14(13), pages 1-52, July.
    19. Sun, Chenhao & Xu, Hao & Zeng, Xiangjun & Wang, Wen & Jiang, Fei & Yang, Xin, 2023. "A vulnerability spatiotemporal distribution prognosis framework for integrated energy systems within intricate data scenes according to importance-fuzzy high-utility pattern identification," Applied Energy, Elsevier, vol. 344(C).
    20. Dong Yu & Shan Gao & Xin Zhao & Yu Liu & Sicheng Wang & Tiancheng E. Song, 2023. "Alternating Iterative Power-Flow Algorithm for Hybrid AC–DC Power Grids Incorporating LCCs and VSCs," Sustainability, MDPI, vol. 15(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923000727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.