IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics030626192031196x.html
   My bibliography  Save this article

Oxidation kinetic modelling of Fe-based oxygen carriers for chemical looping applications: Impact of the topochemical effect

Author

Listed:
  • Chen, Yu-Yen
  • Nadgouda, Sourabh
  • Shah, Vedant
  • Fan, Liang-Shih
  • Tong, Andrew

Abstract

Chemical looping is a promising technology for fossil fuel utilization due to its high fuel conversion efficiency with in-situ CO2 capture capability. Metal oxide are used as oxygen carriers (OCs) and circulate between a fuel reactor and an air reactor to perform reduction and oxidation reactions, respectively. In general, OC exiting the fuel reactor is not reduced fully to its metallic state due to many factors including carbon deposition and OC deactivation. Therefore, the effect of the initial reduction state on the OC oxidation in the air reactor is a significant parameter for consideration in developing the oxidation kinetic model. The objective of this work is to develop a physically significant kinetic model that applies to the oxidation of both initially fully and partially reduced OC with air. For this study, 1.5 mm Fe-based OC particle supported with TiO2 was used as the model OC particle due to its complex multistep reaction nature. The oxidation kinetics were experimentally investigated in a thermogravimetric analyzer (TGA). Results indicate a significant difference in the oxidation rate profile for the OCs when oxidized from an initially fully reduced compared to an initially partially reduced state. Elemental mapping via energy-dispersive X-ray spectroscopy (EDS) reveals a shrinking-core type topochemical pattern across the OC particle, which was identified to be the cause of the dependency of kinetics on the initial reduction state. A generalized kinetic model was developed based on the observed shrinking-core behavior without presuming any rate-determining steps and experimentally validated over a broad range of temperatures (800–1000 °C) and oxygen concentrations (5, 7, 10, and 15 mol%). Impacts of particle porosity, size, and core-shell structure on the OC oxidation kinetics were analyzed in the developed oxidation kinetic model to suggest methods of improving the oxidation rate of the OC without modifying the chemical composition.

Suggested Citation

  • Chen, Yu-Yen & Nadgouda, Sourabh & Shah, Vedant & Fan, Liang-Shih & Tong, Andrew, 2020. "Oxidation kinetic modelling of Fe-based oxygen carriers for chemical looping applications: Impact of the topochemical effect," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s030626192031196x
    DOI: 10.1016/j.apenergy.2020.115701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192031196X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
    2. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett & Poston, James, 2020. "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion," Applied Energy, Elsevier, vol. 262(C).
    3. Huang, Jijiang & Liu, Wen & Hu, Wenting & Metcalfe, Ian & Yang, Yanhui & Liu, Bin, 2019. "Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications," Applied Energy, Elsevier, vol. 236(C), pages 635-647.
    4. Zhu, Yanyan & Jin, Nannan & Liu, Ruilin & Sun, Xueyan & Bai, Lei & Tian, Hanjing & Ma, Xiaoxun & Wang, Xiaodong, 2020. "Bimetallic BaFe2MAl9O19 (M = Mn, Ni, and Co) hexaaluminates as oxygen carriers for chemical looping dry reforming of methane," Applied Energy, Elsevier, vol. 258(C).
    5. Rana, Shazadi & Sun, Zhenkun & Mehrani, Poupak & Hughes, Robin & Macchi, Arturo, 2019. "Ilmenite oxidation kinetics for pressurized chemical looping combustion of natural gas," Applied Energy, Elsevier, vol. 238(C), pages 747-759.
    6. Xu, Dikai & Zhang, Yitao & Hsieh, Tien-Lin & Guo, Mengqing & Qin, Lang & Chung, Cheng & Fan, Liang-Shih & Tong, Andrew, 2018. "A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas," Applied Energy, Elsevier, vol. 222(C), pages 119-131.
    7. Medrano, J.A. & Hamers, H.P. & Williams, G. & van Sint Annaland, M. & Gallucci, F., 2015. "NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications," Applied Energy, Elsevier, vol. 158(C), pages 86-96.
    8. Hsieh, Tien-Lin & Xu, Dikai & Zhang, Yitao & Nadgouda, Sourabh & Wang, Dawei & Chung, Cheng & Pottimurphy, Yaswanth & Guo, Mengqing & Chen, Yu-Yen & Xu, Mingyuan & He, Pengfei & Fan, Liang-Shih & Tong, 2018. "250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture," Applied Energy, Elsevier, vol. 230(C), pages 1660-1672.
    9. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2019. "Particle scale modeling of CuFeAlO4 during reduction with CO in chemical looping applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    2. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    2. Huang, Jijiang & Liu, Wen & Hu, Wenting & Metcalfe, Ian & Yang, Yanhui & Liu, Bin, 2019. "Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications," Applied Energy, Elsevier, vol. 236(C), pages 635-647.
    3. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    4. Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
    5. Güleç, Fatih & Meredith, Will & Sun, Cheng-Gong & Snape, Colin E., 2019. "Selective low temperature chemical looping combustion of higher alkanes with Cu- and Mn- oxides," Energy, Elsevier, vol. 173(C), pages 658-666.
    6. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2016. "The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 184(C), pages 9-18.
    7. Shao, Yali & Wang, Xudong & Jin, Baosheng, 2022. "Numerical investigation of hydrodynamics and cluster characteristics in a chemical looping combustion system," Energy, Elsevier, vol. 244(PB).
    8. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    9. Mohamed, Usama & Zhao, Yingjie & Huang, Yi & Cui, Yang & Shi, Lijuan & Li, Congming & Pourkashanian, Mohamed & Wei, Guoqiang & Yi, Qun & Nimmo, William, 2020. "Sustainability evaluation of biomass direct gasification using chemical looping technology for power generation with and w/o CO2 capture," Energy, Elsevier, vol. 205(C).
    10. Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.
    11. Gür, Turgut M., 2020. "Perspectives on oxygen-based coal conversion towards zero-carbon power generation," Energy, Elsevier, vol. 196(C).
    12. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    13. Zhu, Lin & He, Yangdong & Li, Luling & Lv, Liping & He, Jingling, 2018. "Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission," Energy, Elsevier, vol. 149(C), pages 34-46.
    14. Hsieh, Tien-Lin & Xu, Dikai & Zhang, Yitao & Nadgouda, Sourabh & Wang, Dawei & Chung, Cheng & Pottimurphy, Yaswanth & Guo, Mengqing & Chen, Yu-Yen & Xu, Mingyuan & He, Pengfei & Fan, Liang-Shih & Tong, 2018. "250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture," Applied Energy, Elsevier, vol. 230(C), pages 1660-1672.
    15. Gu, Haiming & Shen, Laihong & Zhong, Zhaoping & Niu, Xin & Liu, Weidong & Ge, Huijun & Jiang, Shouxi & Wang, Lulu, 2015. "Cement/CaO-modified iron ore as oxygen carrier for chemical looping combustion of coal," Applied Energy, Elsevier, vol. 157(C), pages 314-322.
    16. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).
    17. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    18. Källén, Malin & Rydén, Magnus & Lyngfelt, Anders & Mattisson, Tobias, 2015. "Chemical-looping combustion using combined iron/manganese/silicon oxygen carriers," Applied Energy, Elsevier, vol. 157(C), pages 330-337.
    19. Zhu, Xuancan & Shi, Yixiang & Cai, Ningsheng, 2016. "Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption," Applied Energy, Elsevier, vol. 176(C), pages 196-208.
    20. Liu, Shuanghui & Rui, Qixuan & Chen, Zongqi & Zhang, Lihui & Duan, Feng, 2023. "A comparative study of the reaction mechanism for deep reduction hydrogen production using two special steel solid wastes and a chemical looping hydrogen production scheme," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s030626192031196x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.