IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v77y2004i4p375-382.html
   My bibliography  Save this article

Energy-efficient conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 catalyst in the presence of limited oxygen

Author

Listed:
  • Rane, V. H.
  • Rajput, A. M.
  • Karkamkar, A. J.
  • Choudhary, V. R.

Abstract

Oxidative conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 (V:Ce=1:1) catalyst, with or without steam and limited O2, has been studied at different temperatures (700-850 °C), C3H8/O2 ratio (4.0), H2O/C3H8 ratio (0.5) and space velocity (3000 cm3 g-1 h-1). The propane conversion, selectivity for propylene and net heat of reaction ([Delta]Hr) are strongly influenced by the reaction temperature and presence of steam in the reactant feed. In the presence of steam and limited O2, the process involves a coupling of endothermic thermal cracking and exothermic oxidative conversion reactions of propane which occur simultaneously. Because of the coupling of exothermic and endothermic reactions, the process operates in an energy-efficient and safe manner. The net heat of reaction can be controlled by the reaction temperature and concentration of O2. The process exothermicity is found to be reduced drastically with increasing temperature. Due to the addition of steam in the feed, no coke formation was observed in the process.

Suggested Citation

  • Rane, V. H. & Rajput, A. M. & Karkamkar, A. J. & Choudhary, V. R., 2004. "Energy-efficient conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 catalyst in the presence of limited oxygen," Applied Energy, Elsevier, vol. 77(4), pages 375-382, April.
  • Handle: RePEc:eee:appene:v:77:y:2004:i:4:p:375-382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00156-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    2. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:77:y:2004:i:4:p:375-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.