IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v155y2022ics136403212101128x.html
   My bibliography  Save this article

Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers

Author

Listed:
  • Gupta, S.
  • Maulik, A.
  • Das, D.
  • Singh, A.

Abstract

A microgrid comprises renewable and non-renewable power generating sources, controllable loads, energy storage devices and works as a single controllable entity. A gradual shift from conventional internal combustion engine-based vehicles to electric/hybrid electric vehicles has also led to a new load type in the power system. Moreover, demand-side management measures like demand response programs have become popular. This work deals with the optimal coordinated operation of a grid-connected AC microgrid consisting of controllable and uncontrollable power sources, battery storage units, considering plug-in hybrid electric vehicles and demand response programs. Stochastic models of renewable power sources, electric load demand, loads of hybrid electric vehicles (with battery charging characteristic), and grid power price are fed into “Hong’s 2 m point estimate method” embedded optimal operating strategy. The objective is to minimize the cost of operation subject to the satisfaction of technical constraints. A nested stochastic optimization algorithm is implemented to find optimal generation schedule, battery dispatch strategy, and the best incentive value for an incentive-based demand response program. Different charging strategies of hybrid electric vehicles are studied, and their impacts on system operation are investigated. The optimal coordination between a voltage control scheme using a smart transformer with the energy management scheme is also investigated. Simulation studies on a thirty-three bus test system prove the efficacy of the proposed algorithm. The proposed coordinated optimal operating strategy reduces the operating cost by 17.53%∼17.74%. The system loss also reduces by 29.49%∼31.36%.

Suggested Citation

  • Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:rensus:v:155:y:2022:i:c:s136403212101128x
    DOI: 10.1016/j.rser.2021.111861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212101128X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "Multi-agent energy management of smart islands using primal-dual method of multipliers," Energy, Elsevier, vol. 208(C).
    2. Good, Nicholas, 2019. "Using behavioural economic theory in modelling of demand response," Applied Energy, Elsevier, vol. 239(C), pages 107-116.
    3. Monfared, Houman Jamshidi & Ghasemi, Ahmad & Loni, Abdolah & Marzband, Mousa, 2019. "A hybrid price-based demand response program for the residential micro-grid," Energy, Elsevier, vol. 185(C), pages 274-285.
    4. Nan, Sibo & Zhou, Ming & Li, Gengyin, 2018. "Optimal residential community demand response scheduling in smart grid," Applied Energy, Elsevier, vol. 210(C), pages 1280-1289.
    5. Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
    6. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).
    7. Gazijahani, Farhad Samadi & Salehi, Javad, 2018. "Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach," Energy, Elsevier, vol. 161(C), pages 999-1015.
    8. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
    9. Das, Bikash & Mukherjee, V. & Das, Debapriya, 2019. "Optimum DG placement for known power injection from utility/substation by a novel zero bus load flow approach," Energy, Elsevier, vol. 175(C), pages 228-249.
    10. Hasan, Kazi Nazmul & Preece, Robin & Milanović, Jovica V., 2019. "Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 168-180.
    11. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    12. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    13. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    14. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    15. Khalili, Tohid & Jafari, Amirreza & Abapour, Mehdi & Mohammadi-Ivatloo, Behnam, 2019. "Optimal battery technology selection and incentive-based demand response program utilization for reliability improvement of an insular microgrid," Energy, Elsevier, vol. 169(C), pages 92-104.
    16. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    17. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    18. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    19. Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A. & Russo, G., 2023. "The role of energy communities in electricity grid balancing: A flexible tool for smart grid power distribution optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Two-phase operation for coordinated charging of electric vehicles in a market environment: From electric vehicle aggregators’ perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    5. Rafael A. Núñez-Rodríguez & Clodomiro Unsihuay-Vila & Johnny Posada & Omar Pinzón-Ardila, 2024. "Data-Driven Distributionally Robust Optimization for Day-Ahead Operation Planning of a Smart Transformer-Based Meshed Hybrid AC/DC Microgrid Considering the Optimal Reactive Power Dispatch," Energies, MDPI, vol. 17(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    2. Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    4. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    6. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    8. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    9. Chaduvula, Hemanth & Das, Debapriya, 2023. "Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization," Energy, Elsevier, vol. 282(C).
    10. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    11. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2019. "Improving the benefits of demand response participation in facilities with distributed energy resources," Energy, Elsevier, vol. 169(C), pages 710-718.
    13. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.
    14. Mohamed A. Mohamed & Seyedali Mirjalili & Udaya Dampage & Saleh H. Salmen & Sami Al Obaid & Andres Annuk, 2021. "A Cost-Efficient-Based Cooperative Allocation of Mining Devices and Renewable Resources Enhancing Blockchain Architecture," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    15. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    16. Hyung-Joon Kim & Mun-Kyeom Kim, 2019. "Multi-Objective Based Optimal Energy Management of Grid-Connected Microgrid Considering Advanced Demand Response," Energies, MDPI, vol. 12(21), pages 1-28, October.
    17. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    18. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    19. Khalid Alnowibet & Andres Annuk & Udaya Dampage & Mohamed A. Mohamed, 2021. "Effective Energy Management via False Data Detection Scheme for the Interconnected Smart Energy Hub–Microgrid System under Stochastic Framework," Sustainability, MDPI, vol. 13(21), pages 1-32, October.
    20. Torkan, Ramin & Ilinca, Adrian & Ghorbanzadeh, Milad, 2022. "A genetic algorithm optimization approach for smart energy management of microgrids," Renewable Energy, Elsevier, vol. 197(C), pages 852-863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:155:y:2022:i:c:s136403212101128x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.