IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313359.html
   My bibliography  Save this article

Impact of battery degradation models on energy management of a grid-connected DC microgrid

Author

Listed:
  • Wang, Shuoqi
  • Guo, Dongxu
  • Han, Xuebing
  • Lu, Languang
  • Sun, Kai
  • Li, Weihan
  • Sauer, Dirk Uwe
  • Ouyang, Minggao

Abstract

Battery degradation cost is one of the major concerns when designing energy management strategies of DC microgrids. However, many battery degradation models used in the previous works are over-simplified and the effectiveness of which has not been verified. As a result, this paper presents a comparative study of the impact of battery aging models on energy management of the microgrid. Four popular single factor-based semi-empirical models are investigated while a combined factor-based Combined Arrhenius-Peukert-NREL (CAPN) model is proposed with the best fitting performance compared with the experimental data. The five degradation models are considered as part of the objective function in the particle swarm optimization-based energy management structure of a grid-connect microgrid. The optimized power scheduling and state of charge trajectory of the battery under different single factor-based models exhibit enormous deviations, so as the calculated total costs, which have the maximum error of 63.9% compared with the CAPN model. The application of the studied single factor-based models will also result in 3.5%–12.5% additional actual operating cost under non-optimal conditions. This paper first reveals the significant and unneglectable influence of the simplified degradation models on the microgrid energy management, the abandon of the single factor-based models is also recommended.

Suggested Citation

  • Wang, Shuoqi & Guo, Dongxu & Han, Xuebing & Lu, Languang & Sun, Kai & Li, Weihan & Sauer, Dirk Uwe & Ouyang, Minggao, 2020. "Impact of battery degradation models on energy management of a grid-connected DC microgrid," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313359
    DOI: 10.1016/j.energy.2020.118228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García-Triviño, Pablo & Torreglosa, Juan P. & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2016. "Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system," Energy, Elsevier, vol. 115(P1), pages 38-48.
    2. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2019. "Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations," Applied Energy, Elsevier, vol. 237(C), pages 695-707.
    4. Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
    5. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    6. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    7. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    8. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    9. Guo, Li & Wang, Nan & Lu, Hai & Li, Xialin & Wang, Chengshan, 2016. "Multi-objective optimal planning of the stand-alone microgrid system based on different benefit subjects," Energy, Elsevier, vol. 116(P1), pages 353-363.
    10. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    11. Liu, Chang & Wang, Yujie & Chen, Zonghai, 2019. "Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system," Energy, Elsevier, vol. 166(C), pages 796-806.
    12. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    14. Gitizadeh, Mohsen & Fakharzadegan, Hamid, 2014. "Battery capacity determination with respect to optimized energy dispatch schedule in grid-connected photovoltaic (PV) systems," Energy, Elsevier, vol. 65(C), pages 665-674.
    15. Maheshwari, Arpit & Paterakis, Nikolaos G. & Santarelli, Massimo & Gibescu, Madeleine, 2020. "Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model," Applied Energy, Elsevier, vol. 261(C).
    16. Wang, Shuoqi & Lu, Languang & Han, Xuebing & Ouyang, Minggao & Feng, Xuning, 2020. "Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuoqi & Lu, Languang & Han, Xuebing & Ouyang, Minggao & Feng, Xuning, 2020. "Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station," Applied Energy, Elsevier, vol. 259(C).
    2. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    3. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    4. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    5. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Collath, Nils & Cornejo, Martin & Engwerth, Veronika & Hesse, Holger & Jossen, Andreas, 2023. "Increasing the lifetime profitability of battery energy storage systems through aging aware operation," Applied Energy, Elsevier, vol. 348(C).
    7. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    8. Zhang, Cetengfei & Zhou, Quan & Hua, Min & Xu, Hongming & Bassett, Mike & Zhang, Fanggang, 2023. "Cuboid equivalent consumption minimization strategy for energy management of multi-mode plug-in hybrid vehicles considering diverse time scale objectives," Applied Energy, Elsevier, vol. 351(C).
    9. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    10. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    11. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    12. Xie, Qilong & Liu, Rongchuan & Huang, Jihao & Su, Jianhui, 2023. "Residual life prediction of lithium-ion batteries based on data preprocessing and a priori knowledge-assisted CNN-LSTM," Energy, Elsevier, vol. 281(C).
    13. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
    14. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Zupančič, Jernej & Filipič, Bogdan & Gams, Matjaž, 2020. "Genetic-programming-based multi-objective optimization of strategies for home energy-management systems," Energy, Elsevier, vol. 203(C).
    16. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    18. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Elhoussin Elbouchikhi & Yassine Amirat & Gilles Feld & Mohamed Benbouzid & Zhibin Zhou, 2020. "A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications," Energies, MDPI, vol. 13(3), pages 1-23, February.
    20. Jianfang Jia & Jianyu Liang & Yuanhao Shi & Jie Wen & Xiaoqiong Pang & Jianchao Zeng, 2020. "SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.