IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v96y2018icp145-155.html
   My bibliography  Save this article

How to deal with uncertainties in electric power systems? A review

Author

Listed:
  • Jordehi, A. Rezaee

Abstract

In electric power systems, there exist many diverse uncertain parameters such as loads, electricity price, wind power generation and photovoltaic power generation. In power system studies, appropriate modeling and handling of these uncertain parameters is essential. In this paper, the sources of uncertainties in power systems are described and different uncertainty handling methods in power systems are classified and reviewed in details, mentioning the merits and demerits of each method. Based on the conducted review, some directions for future research are delineated.

Suggested Citation

  • Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
  • Handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:145-155
    DOI: 10.1016/j.rser.2018.07.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118305641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.07.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Electricity procurement for large consumers based on Information Gap Decision Theory," Energy Policy, Elsevier, vol. 38(1), pages 234-242, January.
    2. Santos, Maria João & Ferreira, Paula & Araújo, Madalena, 2016. "A methodology to incorporate risk and uncertainty in electricity power planning," Energy, Elsevier, vol. 115(P2), pages 1400-1411.
    3. Liu, Fan & Bie, Zhaohong & Liu, Shiyu & Ding, Tao, 2017. "Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements," Applied Energy, Elsevier, vol. 188(C), pages 399-408.
    4. Reddy, S. Surender, 2017. "Optimal scheduling of thermal-wind-solar power system with storage," Renewable Energy, Elsevier, vol. 101(C), pages 1357-1368.
    5. Narayan, Apurva & Ponnambalam, Kumaraswamy, 2017. "Risk-averse stochastic programming approach for microgrid planning under uncertainty," Renewable Energy, Elsevier, vol. 101(C), pages 399-408.
    6. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    7. Brett Korteling & Suraje Dessai & Zoran Kapelan, 2013. "Erratum to: Using Information-Gap Decision Theory for Water Resources Planning Under Severe Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1173-1174, March.
    8. Qingshan Xu & Yifan Ding & Aixia Zheng, 2017. "An Optimal Dispatch Model of Wind-Integrated Power System Considering Demand Response and Reliability," Sustainability, MDPI, vol. 9(5), pages 1-20, May.
    9. Brett Korteling & Suraje Dessai & Zoran Kapelan, 2013. "Using Information-Gap Decision Theory for Water Resources Planning Under Severe Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1149-1172, March.
    10. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    11. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Huang, Zhijia, 2017. "Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties," Applied Energy, Elsevier, vol. 187(C), pages 62-71.
    12. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    13. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2014. "Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 1-10.
    14. Simão, H.P. & Powell, W.B. & Archer, C.L. & Kempton, W., 2017. "The challenge of integrating offshore wind power in the U.S. electric grid. Part II: Simulation of electricity market operations," Renewable Energy, Elsevier, vol. 103(C), pages 418-431.
    15. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    16. Yanzhe Hu & Yang Li & Mengjie Xu & Li Zhou & Mingjian Cui, 2017. "A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System," Energies, MDPI, vol. 10(3), pages 1-21, March.
    17. Qingwu Gong & Jiazhi Lei & Hui Qiao & Jingjing Qiu, 2017. "Risk Assessment for Distribution Systems Using an Improved PEM-Based Method Considering Wind and Photovoltaic Power Distribution," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    18. Wu, Weidong & Rao, S.S., 2007. "Uncertainty analysis and allocation of joint tolerances in robot manipulators based on interval analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 54-64.
    19. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    20. Archer, C.L. & Simão, H.P. & Kempton, W. & Powell, W.B. & Dvorak, M.J., 2017. "The challenge of integrating offshore wind power in the U.S. electric grid. Part I: Wind forecast error," Renewable Energy, Elsevier, vol. 103(C), pages 346-360.
    21. Moradi, Mohammad H. & Eskandari, Mohsen, 2014. "A hybrid method for simultaneous optimization of DG capacity and operational strategy in microgrids considering uncertainty in electricity price forecasting," Renewable Energy, Elsevier, vol. 68(C), pages 697-714.
    22. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    23. Aghaei, Jamshid & Nezhad, Ali Esmaeel & Rabiee, Abdorreza & Rahimi, Ehsan, 2016. "Contribution of Plug-in Hybrid Electric Vehicles in power system uncertainty management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 450-458.
    24. Esmaeili, Mobin & Sedighizadeh, Mostafa & Esmaili, Masoud, 2016. "Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty," Energy, Elsevier, vol. 103(C), pages 86-99.
    25. Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
    26. Shojaabadi, Saeed & Abapour, Saeed & Abapour, Mehdi & Nahavandi, Ali, 2016. "Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties," Renewable Energy, Elsevier, vol. 99(C), pages 237-252.
    27. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    28. Moradi-Dalvand, M. & Mohammadi-Ivatloo, B. & Amjady, N. & Zareipour, H. & Mazhab-Jafari, A., 2015. "Self-scheduling of a wind producer based on Information Gap Decision Theory," Energy, Elsevier, vol. 81(C), pages 588-600.
    29. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    30. Soares, João & Borges, Nuno & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "Scenario generation for electric vehicles' uncertain behavior in a smart city environment," Energy, Elsevier, vol. 111(C), pages 664-675.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majidi, M. & Mohammadi-Ivatloo, B. & Soroudi, A., 2019. "Application of information gap decision theory in practical energy problems: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 157-165.
    2. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    3. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    4. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    6. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    7. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    9. Zubo, Rana.H.A. & Mokryani, Geev & Rajamani, Haile-Selassie & Aghaei, Jamshid & Niknam, Taher & Pillai, Prashant, 2017. "Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1177-1198.
    10. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Effenberger, Frank & Hilbert, Andreas, 2016. "Towards an energy information system architecture description for industrial manufacturers: Decomposition & allocation view," Energy, Elsevier, vol. 112(C), pages 599-605.
    12. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    13. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    14. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    15. Fu, Yiwei & Lu, Zongxiang & Hu, Wei & Wu, Shuang & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Research on joint optimal dispatching method for hybrid power system considering system security," Applied Energy, Elsevier, vol. 238(C), pages 147-163.
    16. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    17. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    18. T. Chatzivasileiadis & F. Estrada & M. W. Hofkes & R. S. J. Tol, 2019. "Systematic Sensitivity Analysis of the Full Economic Impacts of Sea Level Rise," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1183-1217, March.
    19. Wei-Chih Lin & Yu-Pin Lin & Johnathen Anthony & Tsun-Su Ding, 2015. "Avian Conservation Areas as a Proxy for Contaminated Soil Remediation," IJERPH, MDPI, vol. 12(7), pages 1-20, July.
    20. N. Graveline & B. Aunay & J. Fusillier & J. Rinaudo, 2014. "Coping with Urban & Agriculture Water Demand Uncertainty in Water Management Plan Design: the Interest of Participatory Scenario Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3075-3093, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:145-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.