IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924020099.html
   My bibliography  Save this article

Regional vehicle energy consumption evaluation framework to quantify the benefits of vehicle electrification in plateau city: A case study of Xining, China

Author

Listed:
  • Jia, Zhenyu
  • Yin, Jiawei
  • Cao, Zeping
  • Wu, Lin
  • Wei, Ning
  • Zhang, Yanjie
  • Jiang, Zhiwen
  • Guo, Dongping
  • Zhang, Qijun
  • Mao, Hongjun

Abstract

Vehicle electrification holds significant potential for driving both decarbonization and improved energy efficiency within the realm of road transportation. However, accurate quantification of energy consumption advantages offered by electric vehicles (EVs) has remained elusive, thus impeding their long-term development due to variations across cities and vehicle types. To address this challenge, we propose a novel regional vehicle energy consumption assessment framework that integrates a region-specific driving cycle (DC) database and advanced high-precision energy consumption models. The regional DC database is constructed using a Markov chain approach. The database is stochastic and diverse, while taking into account real driving features and regional geographic environments. Energy consumption models for internal combustion engine vehicle (ICEV), plug-in hybrid electric vehicle (PHEV) and battery electric vehicle (BEV) are constructed based on machine learning approach. These models have good generalization ability and prediction accuracy, with R2 of 0.86, 0.86 and 0.77 on the test set, respectively. According to the interpretability of the models, vehicle acceleration and vehicle specific power are considered to be the most important features affecting vehicle energy consumption. According to the evaluation results, compared to using ICEV, the promotion of PHEV and BEV in Xining, a plateau city, can reduce energy consumption by 27.83 % and 32.05 %, respectively. The framework not only unifies the scale of energy consumption evaluation among different vehicle types, but also its good generalization ability can be migrated and extended to the evaluation of vehicle energy consumption in various regions. The establishment of this framework will contribute to the promotion and popularization of electric vehicles, as well as the advancement of energy-saving initiatives in the transportation sector.

Suggested Citation

  • Jia, Zhenyu & Yin, Jiawei & Cao, Zeping & Wu, Lin & Wei, Ning & Zhang, Yanjie & Jiang, Zhiwen & Guo, Dongping & Zhang, Qijun & Mao, Hongjun, 2025. "Regional vehicle energy consumption evaluation framework to quantify the benefits of vehicle electrification in plateau city: A case study of Xining, China," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020099
    DOI: 10.1016/j.apenergy.2024.124626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zeyu & Xiong, Rui & Lu, Jiahuan & Li, Xinggang, 2018. "Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 213(C), pages 375-383.
    2. Ashley Nunes & Lucas Woodley & Philip Rossetti, 2022. "Re-thinking procurement incentives for electric vehicles to achieve net-zero emissions," Nature Sustainability, Nature, vol. 5(6), pages 527-532, June.
    3. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    4. Mahmud, Khizir & Town, Graham E., 2016. "A review of computer tools for modeling electric vehicle energy requirements and their impact on power distribution networks," Applied Energy, Elsevier, vol. 172(C), pages 337-359.
    5. Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
    6. Wang, Yanji & Li, Hangyu & Xu, Jianchun & Liu, Shuyang & Tan, Qizhi & Wang, Xiaopu, 2023. "Machine learning assisted two-phase upscaling for large-scale oil-water system," Applied Energy, Elsevier, vol. 337(C).
    7. Fernandes, P. & Tomás, R. & Ferreira, E. & Bahmankhah, B. & Coelho, M.C., 2021. "Driving aggressiveness in hybrid electric vehicles: Assessing the impact of driving volatility on emission rates," Applied Energy, Elsevier, vol. 284(C).
    8. Xiaosong Hu & Fengchun Sun & Yuan Zou, 2010. "Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer," Energies, MDPI, vol. 3(9), pages 1-18, September.
    9. Xing, Yang & Lv, Chen & Cao, Dongpu & Lu, Chao, 2020. "Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling," Applied Energy, Elsevier, vol. 261(C).
    10. Hiermann, Gerhard & Hartl, Richard F. & Puchinger, Jakob & Vidal, Thibaut, 2019. "Routing a mix of conventional, plug-in hybrid, and electric vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 235-248.
    11. Wager, Guido & Whale, Jonathan & Braunl, Thomas, 2016. "Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 158-165.
    12. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    13. Tao, Siyou & Ding, Ke & Li, Zhuoyun & Zhang, Hui, 2022. "Development of a representative driving cycle for evaluating exhaust emission and fuel consumption for Chinese switcher locomotives," Applied Energy, Elsevier, vol. 322(C).
    14. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    15. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    16. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    17. Zou, Yuan & Wei, Shouyang & Sun, Fengchun & Hu, Xiaosong & Shiao, Yaojung, 2016. "Large-scale deployment of electric taxis in Beijing: A real-world analysis," Energy, Elsevier, vol. 100(C), pages 25-39.
    18. Wang, An & Xu, Junshi & Zhang, Mingqian & Zhai, Zhiqiang & Song, Guohua & Hatzopoulou, Marianne, 2022. "Emissions and fuel consumption of a hybrid electric vehicle in real-world metropolitan traffic conditions," Applied Energy, Elsevier, vol. 306(PB).
    19. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    20. Hongwen, He & Jinquan, Guo & Jiankun, Peng & Huachun, Tan & Chao, Sun, 2018. "Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 95-107.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinfang & Zhang, Zhe & Liu, Yang & Xu, Zhigang & Qu, Xiaobo, 2024. "A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation," Renewable Energy, Elsevier, vol. 234(C).
    2. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2022. "Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle," Energy, Elsevier, vol. 238(PC).
    3. Zhao, Yinan & Wen, Yifan & Wang, Fang & Tu, Wei & Zhang, Shaojun & Wu, Ye & Hao, Jiming, 2023. "Feasibility, economic and carbon reduction benefits of ride-hailing vehicle electrification by coupling travel trajectory and charging infrastructure data," Applied Energy, Elsevier, vol. 342(C).
    4. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    5. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    6. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    7. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    8. Lee, Gwangryeol & Song, Jingeun & Han, Jungwon & Lim, Yunsung & Park, Suhan, 2023. "Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions," Energy, Elsevier, vol. 283(C).
    9. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).
    10. Choi, Mingi & Cha, Junepyo & Song, Jingeun, 2024. "Analysis of fuel economy reduction factors of hybrid electric vehicles in winter using on-road driving data," Energy, Elsevier, vol. 289(C).
    11. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    12. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    13. Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
    14. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    15. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    16. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    17. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    18. Torkey, Alaa & Abdelgawad, Hossam, 2022. "Framework for planning of EV charging infrastructure: Where should cities start?," Transport Policy, Elsevier, vol. 128(C), pages 193-208.
    19. Ana Olona & Luis Castejón, 2024. "Analysis of the Temperature Reached by the Traction Battery of an Electric Vehicle during the Drying Phase in the Paint Booth," Energies, MDPI, vol. 17(14), pages 1-59, July.
    20. Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.