IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p1644-1653.html
   My bibliography  Save this article

Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles

Author

Listed:
  • Sun, Chao
  • Sun, Fengchun
  • He, Hongwen

Abstract

Energy management strategy is crucial in improving the fuel economy of hybrid electric vehicles (HEVs). This paper targets at evaluating the role of velocity forecast in the adaptive equivalent consumption minimization strategies (ECMS) for HEVs. A neural network based velocity predictor is constructed to forecast the short-term future driving behaviors by learning from history data. Then the velocity predictor is combined with adaptive-ECMS to provide temporary driving information for real-time equivalence factor (EF) adaptation. Compared with traditional adaptive-ECMS, which uses historical driving profile for EF estimation, the proposed strategy is able to foresee the change of the driving behaviors and adjust the EF more reasonably. Simulation results show that, compared with traditional adaptive-ECMS, the proposed improvement with velocity forecast incorporated is able to achieve better fuel economy and more stable battery state of charge (SOC) trajectory, with a fuel consumption reduction by over 3%.

Suggested Citation

  • Sun, Chao & Sun, Fengchun & He, Hongwen, 2017. "Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1644-1653.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1644-1653
    DOI: 10.1016/j.apenergy.2016.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916301490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pérez, Laura V. & Bossio, Guillermo R. & Moitre, Diego & García, Guillermo O., 2006. "Optimization of power management in an hybrid electric vehicle using dynamic programming," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(1), pages 244-254.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bảo-Huy Nguyễn & João Pedro F. Trovão & Ronan German & Alain Bouscayrol, 2020. "Real-Time Energy Management of Parallel Hybrid Electric Vehicles Using Linear Quadratic Regulation," Energies, MDPI, vol. 13(21), pages 1-19, October.
    2. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    3. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    4. Bedatri Moulik & Dirk Söffker, 2015. "Optimal Rule-Based Power Management for Online, Real-Time Applications in HEVs with Multiple Sources and Objectives: A Review," Energies, MDPI, vol. 8(9), pages 1-15, August.
    5. Pozna, Claudiu & Troester, Fritz & Precup, Radu-Emil & Tar, József K. & Preitl, Stefan, 2009. "On the design of an obstacle avoiding trajectory: Method and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2211-2226.
    6. Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.
    7. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    8. Chaoying Xia & Cong Zhang, 2015. "Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index," Energies, MDPI, vol. 8(11), pages 1-16, November.
    9. Constantijn Romijn & Tijs Donkers & John Kessels & Siep Weiland, 2017. "Real-Time Distributed Economic Model Predictive Control for Complete Vehicle Energy Management," Energies, MDPI, vol. 10(8), pages 1-28, July.
    10. Tian, Xiang & Cai, Yingfeng & Sun, Xiaodong & Zhu, Zhen & Xu, Yiqiang, 2019. "An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses," Energy, Elsevier, vol. 189(C).
    11. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Xiang, Changle & Li, Xunming, 2022. "Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach," Energy, Elsevier, vol. 247(C).
    12. Zhang, Shuo & Xiong, Rui & Zhang, Chengning, 2015. "Pontryagin’s Minimum Principle-based power management of a dual-motor-driven electric bus," Applied Energy, Elsevier, vol. 159(C), pages 370-380.
    13. Zhou, Xingyu & Qin, Datong & Hu, Jianjun, 2017. "Multi-objective optimization design and performance evaluation for plug-in hybrid electric vehicle powertrains," Applied Energy, Elsevier, vol. 208(C), pages 1608-1625.
    14. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    15. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    16. Pérez, Laura V. & Pilotta, Elvio A., 2009. "Optimal power split in a hybrid electric vehicle using direct transcription of an optimal control problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(6), pages 1959-1970.
    17. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Wang, Hanchen & Arjmandzadeh, Ziba & Ye, Yiming & Zhang, Jiangfeng & Xu, Bin, 2024. "FlexNet: A warm start method for deep reinforcement learning in hybrid electric vehicle energy management applications," Energy, Elsevier, vol. 288(C).
    19. Li, Junqiu & Jin, Xin & Xiong, Rui, 2017. "Multi-objective optimization study of energy management strategy and economic analysis for a range-extended electric bus," Applied Energy, Elsevier, vol. 194(C), pages 798-807.
    20. James Jeffs & Truong Quang Dinh & Widanalage Dhammika Widanage & Andrew McGordon & Alessandro Picarelli, 2020. "Optimisation of Direct Battery Thermal Management for EVs Operating in Low-Temperature Climates," Energies, MDPI, vol. 13(22), pages 1-35, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1644-1653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.