IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v276y2023ics0360544223009581.html
   My bibliography  Save this article

Comparative analysis for different vehicle powertrains in terms of energy-saving potential and cost-effectiveness in China

Author

Listed:
  • Liu, Xinglong
  • Zhao, Fuquan
  • Hao, Han
  • Liu, Zongwei

Abstract

Technology evaluation of vehicle powertrains is the basis for policymakers and automotive manufacturers to make technical decisions. However, there is a research gap in comparative studies on different powertrain technologies under uniform assumptions (dynamic performance and test-driving cycles) for light-duty vehicles in China. To fill these gaps, this paper proposes an innovative technology evaluation model of the powertrains for the energy-saving cost-effectiveness of powertrains. The results are as follows: as the electrification degree of the powertrain technology increases, its curb mass and direct manufacturing cost increase, while its comprehensive fuel consumption gradually decreases. Changes in curb mass and direct manufacturing cost are the combined effect of powertrain electrification upgrades and engine simplification. ICEV has limited fuel-saving potential and poor cost-effectiveness. HEV can achieve more significant fuel savings with minor cost increases and has the highest cost-effectiveness. PHEV50, REEV180, and BEV400 have high fuel economies, but their cost-effectiveness is poor due to the high cost of the battery system. In the short term, the Chinese government should encourage automotive manufacturers to increase their research and development investment in HEVs to replace ICEVs. In the long term, the government should promote battery technologies to reduce the direct manufacturing cost of NEVs.

Suggested Citation

  • Liu, Xinglong & Zhao, Fuquan & Hao, Han & Liu, Zongwei, 2023. "Comparative analysis for different vehicle powertrains in terms of energy-saving potential and cost-effectiveness in China," Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009581
    DOI: 10.1016/j.energy.2023.127564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223009581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Milovanoff & I. Daniel Posen & Heather L. MacLean, 2020. "Electrification of light-duty vehicle fleet alone will not meet mitigation targets," Nature Climate Change, Nature, vol. 10(12), pages 1102-1107, December.
    2. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    3. Yuan, Xueliang & Liu, Xin & Zuo, Jian, 2015. "The development of new energy vehicles for a sustainable future: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 298-305.
    4. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
    5. Seixas, J. & Simões, S. & Dias, L. & Kanudia, A. & Fortes, P. & Gargiulo, M., 2015. "Assessing the cost-effectiveness of electric vehicles in European countries using integrated modeling," Energy Policy, Elsevier, vol. 80(C), pages 165-176.
    6. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    7. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    8. Peterson, Scott B. & Michalek, Jeremy J., 2013. "Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption," Energy Policy, Elsevier, vol. 52(C), pages 429-438.
    9. Xin He & Shiqi Ou & Yu Gan & Zifeng Lu & Steven Victor Przesmitzki & Jessey Lee Bouchard & Lang Sui & Amer Ahmad Amer & Zhenhong Lin & Rujie Yu & Yan Zhou & Michael Wang, 2020. "Greenhouse gas consequences of the China dual credit policy," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    10. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    11. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    12. Liu, Zongwei & Hao, Han & Cheng, Xiang & Zhao, Fuquan, 2018. "Critical issues of energy efficient and new energy vehicles development in China," Energy Policy, Elsevier, vol. 115(C), pages 92-97.
    13. Kiyoung Kim & Namdoo Kim & Jongryeol Jeong & Sunghwan Min & Horim Yang & Ram Vijayagopal & Aymeric Rousseau & Suk Won Cha, 2021. "A Component-Sizing Methodology for a Hybrid Electric Vehicle Using an Optimization Algorithm," Energies, MDPI, vol. 14(11), pages 1-15, May.
    14. Fuquan Zhao & Kangda Chen & Han Hao & Zongwei Liu, 2020. "Challenges, Potential and Opportunities for Internal Combustion Engines in China," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuquan Zhao & Kangda Chen & Han Hao & Zongwei Liu, 2020. "Challenges, Potential and Opportunities for Internal Combustion Engines in China," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    2. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    4. Zhang, Tong & Burke, Paul J. & Wang, Qi, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Resource and Energy Economics, Elsevier, vol. 76(C).
    5. Gan, Yu & Wang, Michael & Lu, Zifeng & Kelly, Jarod, 2021. "Taking into account greenhouse gas emissions of electric vehicles for transportation de-carbonization," Energy Policy, Elsevier, vol. 155(C).
    6. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    7. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    8. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    9. Peng Yu & Jian Zhang & Defang Yang & Xin Lin & Tianying Xu, 2019. "The Evolution of China’s New Energy Vehicle Industry from the Perspective of a Technology–Market–Policy Framework," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    10. Wu, Zezhou & He, Qiufeng & Li, Jiarun & Bi, Guoqiang & Antwi-Afari, Maxwell Fordjour, 2023. "Public attitudes and sentiments towards new energy vehicles in China: A text mining approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Tan, Ruipeng & Lin, Boqiang, 2019. "Public perception of new energy vehicles: Evidence from willingness to pay for new energy bus fares in China," Energy Policy, Elsevier, vol. 130(C), pages 347-354.
    12. Hu, Zheng & Yuan, Jiahai, 2018. "China’s NEV market development and its capability of enabling premium NEV: Referencing from the NEV market performance of BMW and Mercedes in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 545-555.
    13. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    14. Luo, Qi & Yin, Yunlei & Chen, Pengyu & Zhan, Zhenfei & Saigal, Romesh, 2022. "Dynamic subsidies for synergistic development of charging infrastructure and electric vehicle adoption," Transport Policy, Elsevier, vol. 129(C), pages 117-136.
    15. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    16. Yongqing Xiong & Shufeng Qin, 2021. "Differences in the effects of China’s new energy vehicle industry policies on market growth from the perspective of policy mix," Energy & Environment, , vol. 32(3), pages 542-561, May.
    17. Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Optimal Degree of Hybridization for Spark-Ignited Engines with Optional Variable Valve Timings," Energies, MDPI, vol. 14(23), pages 1-21, December.
    18. Susheng Wang & Gang Chen & Dawei Huang, 2021. "Can the New Energy Vehicle Pilot Policy Achieve Green Innovation and Emission Reduction?—A Difference-in-Differences Analysis on the Evaluation of China’s New Energy Fiscal Subsidy Policy," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    19. Zhang, Lei & Qin, Quande, 2018. "China’s new energy vehicle policies: Evolution, comparison and recommendation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 57-72.
    20. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.